1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
//! This module provides traits for calling rust functions dynamically.
//!
//! All functions which implement the `DynamicFunction` trait can be called by passing an array of
//! [`EvaluatedTerm`]s to it. The return value is again of type [`EvaluatedTerm`].
//!
//! Rust is a statically typed language. That means the compiler would be able to statically verify
//! that a term evaluates without any type errors.
//!
//! While this is generally an advance, in the case of our fuzzer this is not very helpful.
//! The fuzzer should be able to mutate the term trees arbitrarily. Of course, we also have
//! to check for the types during runtime. If types are not compatible then, the evaluation
//! of the term will fail. But this is not something that can be done during compile time.
//! Therefore, we introduced a trait for dynamically typed functions on top of statically
//! typed Rust functions.
//!
//! Each function which implements the following trait can be made into a dynamic function:
//!
//! ```rust
//! use puffin::algebra::error::FnError;
//!
//! type ConcreteFunction<A1, A2, A3, R> = dyn Fn(A1, A2, A3) -> Result<R, FnError>;
//! ```
//!
//! where `A1`, `A2`, `A3` are argument types and `R` is the return type. From these statically
//! typed function we can generate dynamically types ones which implement the following trait:
//!
//! ```rust
//! use std::any::Any;
//!
//! use puffin::algebra::error::FnError;
//! use puffin::protocol::{EvaluatedTerm, ProtocolTypes};
//!
//! pub trait DynamicFunction<PT: ProtocolTypes>:
//!     Fn(&Vec<Box<dyn EvaluatedTerm<PT>>>) -> Result<Box<dyn EvaluatedTerm<PT>>, FnError>
//! {
//! }
//! ```
//!
//! Note, that both functions return a `Result` and therefore can gracefully fail.
//!
//! `DynamicFunctions` can be called with an array of any type implementing the `EvaluatedTerm`
//! trait. The result must also implement `EvaluatedTerm`. Rust offers a unique ID for each type.
//! Using this type we can check during runtime whether types are available. The types of each
//! variable, constant and function are preserved and stored alongside the `DynamicFunction`.
//!
//! The following function is a simple example for a constant:
//!
//! ```rust
//! use puffin::algebra::error::FnError;
//!
//! pub fn fn_some_value() -> Result<u32, FnError> {
//!     Ok(42)
//! }
//! ```
//!
//! It returns one possibility for the cipher suites which could be sent during a `ClientHello`.
use std::any::{type_name, TypeId};
use std::collections::hash_map::DefaultHasher;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;

use itertools::Itertools;
use serde::de::Visitor;
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};

use super::error::FnError;
use crate::protocol::{EvaluatedTerm, ProtocolTypes};

/// Describes the attributes of a [`DynamicFunction`]
#[derive(Serialize, Deserialize, Debug, Clone, Copy)]
pub struct FunctionAttributes {
    /// Whether the function symbol computes "opaque" message such as encryption, signature,
    /// MAC, AEAD, Formally: all symbols whose concretization does not contain a single
    /// conretization of its arguments
    pub is_opaque: bool,
    /// Whether the function symbol computes a list such as `fn_append_certificate`.
    pub is_list: bool,
    /// Whether the function symbol computes a strict sub-term (accessed function symbols).
    /// Incidentally, its concretization does not contain all the conretizations of its arguments.
    /// Examples: `fn_get_server_key_share`.
    pub is_get: bool,
}
// TODO: add a uni test for making sure the given attributes are correct

impl Default for FunctionAttributes {
    fn default() -> Self {
        Self {
            is_opaque: false,
            is_list: false,
            is_get: false,
        }
    }
}

/// Describes the shape of a [`DynamicFunction`]
#[derive(Serialize, Deserialize, Debug, Clone)]
#[serde(bound = "PT: ProtocolTypes")]
pub struct DynamicFunctionShape<PT: ProtocolTypes> {
    pub name: &'static str,
    pub argument_types: Vec<TypeShape<PT>>,
    pub return_type: TypeShape<PT>,
}

impl<PT: ProtocolTypes> Eq for DynamicFunctionShape<PT> {}
impl<PT: ProtocolTypes> PartialEq for DynamicFunctionShape<PT> {
    fn eq(&self, other: &Self) -> bool {
        self.name.eq(other.name) // name is unique
    }
}

impl<PT: ProtocolTypes> Hash for DynamicFunctionShape<PT> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.name.hash(state);
    }
}

impl<PT: ProtocolTypes> DynamicFunctionShape<PT> {
    #[must_use]
    pub fn arity(&self) -> u16 {
        self.argument_types.len() as u16
    }

    #[must_use]
    pub fn is_constant(&self) -> bool {
        self.arity() == 0
    }
}

impl<PT: ProtocolTypes> fmt::Display for DynamicFunctionShape<PT> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "{}({}) -> {}",
            self.name,
            self.argument_types
                .iter()
                .map(|typ| typ.name.to_string())
                .join(","),
            self.return_type.name
        )
    }
}

/// Hashes [`TypeId`]s to be more readable
fn hash_type_id(type_id: &TypeId) -> u64 {
    let mut hasher = DefaultHasher::new();
    type_id.hash(&mut hasher);
    hasher.finish()
}

fn format_args<PT: ProtocolTypes, P: AsRef<dyn EvaluatedTerm<PT>>>(anys: &[P]) -> String {
    format!(
        "({})",
        anys.iter()
            .map(|any| {
                let id = &any.as_ref().as_any().type_id();
                format!("{:x}", hash_type_id(id))
            })
            .join(",")
    )
}

/// Cloneable type for dynamic functions. This trait is automatically implemented for arbitrary
/// closures and functions of the form: `Fn(&Vec<Box<dyn Any>>) -> Box<dyn Any>`
///
/// [`Clone`] is implemented for `Box<dyn DynamicFunction>` using this trick:
/// <https://users.rust-lang.org/t/how-to-clone-a-boxed-closure/31035/25>
///
/// We want to use Any here and not `VariableData` (which implements Clone). Else all returned types
/// in functions `op_impl.rs` would need to return a cloneable struct. Message for example is not.
pub trait DynamicFunction<PT: ProtocolTypes>:
    Fn(&Vec<Box<dyn EvaluatedTerm<PT>>>) -> Result<Box<dyn EvaluatedTerm<PT>>, FnError> + Send + Sync
{
    fn clone_box(&self) -> Box<dyn DynamicFunction<PT>>;
}

impl<F, PT: ProtocolTypes> DynamicFunction<PT> for F
where
    F: 'static
        + Fn(&Vec<Box<dyn EvaluatedTerm<PT>>>) -> Result<Box<dyn EvaluatedTerm<PT>>, FnError>
        + Clone
        + Send
        + Sync,
{
    fn clone_box(&self) -> Box<dyn DynamicFunction<PT>> {
        Box::new(self.clone())
    }
}

impl<PT: ProtocolTypes> fmt::Debug for Box<dyn DynamicFunction<PT>> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "DynamicFunction")
    }
}

impl<PT: ProtocolTypes> fmt::Display for Box<dyn DynamicFunction<PT>> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "DynamicFunction")
    }
}

impl<PT: ProtocolTypes> Clone for Box<dyn DynamicFunction<PT>> {
    fn clone(&self) -> Self {
        (**self).clone_box()
    }
}

/// This trait is implemented for function traits in order to:
/// * describe their shape during runtime
/// * wrap them into a [`DynamicFunction`] which is callable with arbitrary data
///
/// Adapted from <https://jsdw.me/posts/rust-fn-traits/> but using type ids
pub trait DescribableFunction<PT: ProtocolTypes, Types> {
    fn name(&'static self) -> &'static str;
    fn shape() -> DynamicFunctionShape<PT>;
    fn make_dynamic(&'static self) -> Box<dyn DynamicFunction<PT>>;
}

macro_rules! dynamic_fn {
    ($($arg:ident)* => $res:ident) => (
    impl<F,PT : ProtocolTypes, $res: 'static, $($arg: 'static),*>
        DescribableFunction<PT, ($res, $($arg),*)> for F
    where
        F: (Fn($(&$arg),*)  -> Result<$res, FnError>) + Send + Sync,
        $res: Send + Sync,
        R: EvaluatedTerm<PT>,
        $($arg: Send + Sync),*
    {
        fn shape() -> DynamicFunctionShape<PT> {
            DynamicFunctionShape::<PT> {
                name: std::any::type_name::<F>(),
                argument_types: vec![$(TypeShape::<PT>::of::<$arg>()),*],
                return_type: TypeShape::<PT>::of::<$res>(),
            }
        }

        fn name(&'static self) -> &'static str {
            std::any::type_name::<F>()
        }

        fn make_dynamic(&'static self) -> Box<dyn DynamicFunction<PT>> {
            #[allow(unused_variables)]
            Box::new(move |args: &Vec<Box<dyn EvaluatedTerm<PT>>>| {
                #[allow(unused_mut)]
                let mut index = 0;

                let result: Result<$res, FnError> = self($(
                       #[allow(unused_assignments)]
                       #[allow(clippy::mixed_read_write_in_expression)]
                       {
                           if let Some(arg_) = args.get(index)
                                    .ok_or_else(|| {
                                        let shape = Self::shape();
                                        FnError::Unknown(format!("Missing argument #{} while calling {}.", index + 1, shape.name))
                                    })?
                                    .as_any().downcast_ref::<$arg>() {
                               index += 1;
                               arg_
                           } else {
                               let shape = Self::shape();
                               return Err(FnError::Unknown(format!(
                                    "Passed argument #{} of {} did not match the shape {}. Hashes of passed types are {}.",
                                    index + 1,
                                    shape.name,
                                    shape,
                                    format_args(args)
                               )));
                           }
                       }
                ),*);

                result.map(|result| Box::new(result) as Box<dyn EvaluatedTerm<PT>>)
            })
        }
    }
    )
}

dynamic_fn!( => R);
dynamic_fn!(T1 => R);
dynamic_fn!(T1 T2 => R);
dynamic_fn!(T1 T2 T3 => R);
dynamic_fn!(T1 T2 T3 T4 => R);
dynamic_fn!(T1 T2 T3 T4 T5 => R);
dynamic_fn!(T1 T2 T3 T4 T5 T6 => R);
dynamic_fn!(T1 T2 T3 T4 T5 T6 T7 => R);
dynamic_fn!(T1 T2 T3 T4 T5 T6 T7 T8 => R);
dynamic_fn!(T1 T2 T3 T4 T5 T6 T7 T8 T9 => R);

pub fn make_dynamic<F: 'static, PT: ProtocolTypes, Types>(
    f: &'static F,
) -> (DynamicFunctionShape<PT>, Box<dyn DynamicFunction<PT>>)
where
    F: DescribableFunction<PT, Types>,
{
    (F::shape(), f.make_dynamic())
}

#[derive(Copy, Clone, Debug)]
pub struct TypeShape<PT: ProtocolTypes> {
    inner_type_id: TypeId,
    pub name: &'static str,
    phantom: PhantomData<PT>,
}

impl<PT: ProtocolTypes> TypeShape<PT> {
    #[must_use]
    pub fn of<T: 'static>() -> Self {
        Self {
            inner_type_id: TypeId::of::<T>(),
            name: type_name::<T>(),
            phantom: PhantomData,
        }
    }
}

impl<PT: ProtocolTypes> From<TypeShape<PT>> for TypeId {
    fn from(shape: TypeShape<PT>) -> Self {
        shape.inner_type_id
    }
}

impl<PT: ProtocolTypes> Eq for TypeShape<PT> {}
impl<PT: ProtocolTypes> PartialEq for TypeShape<PT> {
    fn eq(&self, other: &Self) -> bool {
        self.inner_type_id == other.inner_type_id
    }
}

impl<PT: ProtocolTypes> Hash for TypeShape<PT> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.inner_type_id.hash(state);
    }
}

impl<PT: ProtocolTypes> fmt::Display for TypeShape<PT> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.name)
    }
}

impl<PT: ProtocolTypes> Serialize for TypeShape<PT> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        serializer.serialize_str(self.name)
    }
}

impl<'de, PT: ProtocolTypes> Deserialize<'de> for TypeShape<PT> {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        struct TypeShapeVisitor<PT: ProtocolTypes>(PhantomData<PT>);

        impl<'de, PT: ProtocolTypes> Visitor<'de> for TypeShapeVisitor<PT> {
            type Value = TypeShape<PT>;

            fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
                formatter.write_str("a TypeShape")
            }

            fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
            where
                E: de::Error,
            {
                let typ = PT::signature()
                    .types_by_name
                    .get(v)
                    .ok_or_else(|| de::Error::missing_field("could not find type"))?;
                Ok(typ.clone())
            }
        }

        deserializer.deserialize_str(TypeShapeVisitor(PhantomData))
    }
}