1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//! This module provides[`Term`]sas well as iterators over them.

use std::{any::Any, fmt, fmt::Formatter};

use itertools::Itertools;
use serde::{Deserialize, Serialize};

use super::atoms::{Function, Variable};
use crate::{
    algebra::{dynamic_function::TypeShape, error::FnError, Matcher},
    error::Error,
    protocol::ProtocolBehavior,
    trace::{Source, TraceContext},
};

/// A first-order term: either a [`Variable`] or an application of an [`Function`].
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Eq, Hash)]
#[serde(bound = "M: Matcher")]
pub enum Term<M: Matcher> {
    /// A concrete but unspecified `Term` (e.g. `x`, `y`).
    /// See [`Variable`] for more information.
    ///
    Variable(Variable<M>),
    /// An [`Function`] applied to zero or more `Term`s (e.g. (`f(x, y)`, `g()`).
    ///
    /// A `Term` that is an application of an [`Function`] with arity 0 applied to 0 `Term`s can be considered a constant.
    ///
    Application(Function, Vec<Term<M>>),
}

impl<M: Matcher> fmt::Display for Term<M> {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.display_at_depth(0))
    }
}

impl<M: Matcher> Term<M> {
    pub fn resistant_id(&self) -> u32 {
        match self {
            Term::Variable(v) => v.resistant_id,
            Term::Application(f, _) => f.resistant_id,
        }
    }

    pub fn size(&self) -> usize {
        match self {
            Term::Variable(_) => 1,
            Term::Application(_, ref subterms) => {
                subterms.iter().map(|subterm| subterm.size()).sum::<usize>() + 1
            }
        }
    }

    pub fn is_leaf(&self) -> bool {
        match self {
            Term::Variable(_) => {
                true // variable
            }
            Term::Application(_, ref subterms) => {
                subterms.is_empty() // constant
            }
        }
    }

    pub fn get_type_shape(&self) -> &TypeShape {
        match self {
            Term::Variable(v) => &v.typ,
            Term::Application(function, _) => &function.shape().return_type,
        }
    }

    pub fn name(&self) -> &str {
        match self {
            Term::Variable(v) => v.typ.name,
            Term::Application(function, _) => function.name(),
        }
    }

    pub fn mutate(&mut self, other: Term<M>) {
        *self = other;
    }

    fn display_at_depth(&self, depth: usize) -> String {
        let tabs = "\t".repeat(depth);
        match self {
            Term::Variable(ref v) => format!("{}{}", tabs, v),
            Term::Application(ref func, ref args) => {
                let op_str = remove_prefix(func.name());
                let return_type = remove_prefix(func.shape().return_type.name);
                if args.is_empty() {
                    format!("{}{} -> {}", tabs, op_str, return_type)
                } else {
                    let args_str = args
                        .iter()
                        .map(|arg| arg.display_at_depth(depth + 1))
                        .join(",\n");
                    format!(
                        "{}{}(\n{}\n{}) -> {}",
                        tabs, op_str, args_str, tabs, return_type
                    )
                }
            }
        }
    }

    pub fn evaluate<PB: ProtocolBehavior>(
        &self,
        context: &TraceContext<PB>,
    ) -> Result<Box<dyn Any>, Error>
    where
        PB: ProtocolBehavior<Matcher = M>,
    {
        match self {
            Term::Variable(variable) => context
                .find_variable(variable.typ, &variable.query)
                .map(|data| data.boxed_any())
                .or_else(|| {
                    if let Some(Source::Agent(agent_name)) = variable.query.source {
                        context.find_claim(agent_name, variable.typ)
                    } else {
                        todo!("Implement querying by label");
                    }
                })
                .ok_or_else(|| Error::Term(format!("Unable to find variable {}!", variable))),
            Term::Application(func, args) => {
                let mut dynamic_args: Vec<Box<dyn Any>> = Vec::new();
                for term in args {
                    match term.evaluate(context) {
                        Ok(data) => {
                            dynamic_args.push(data);
                        }
                        Err(e) => {
                            return Err(e);
                        }
                    }
                }
                let dynamic_fn = &func.dynamic_fn();
                let result: Result<Box<dyn Any>, FnError> = dynamic_fn(&dynamic_args);
                result.map_err(Error::Fn)
            }
        }
    }
}

fn append<'a, M: Matcher>(term: &'a Term<M>, v: &mut Vec<&'a Term<M>>) {
    match *term {
        Term::Variable(_) => {}
        Term::Application(_, ref subterms) => {
            for subterm in subterms {
                append(subterm, v);
            }
        }
    }

    v.push(term);
}

/// Having the same mutator for &'a mut Term is not possible in Rust:
/// * <https://stackoverflow.com/questions/49057270/is-there-a-way-to-iterate-over-a-mutable-tree-to-get-a-random-node>
/// * <https://sachanganesh.com/programming/graph-tree-traversals-in-rust/>
impl<'a, M: Matcher> IntoIterator for &'a Term<M> {
    type Item = &'a Term<M>;
    type IntoIter = std::vec::IntoIter<&'a Term<M>>;

    fn into_iter(self) -> Self::IntoIter {
        let mut result = vec![];
        append::<M>(self, &mut result);
        result.into_iter()
    }
}

pub trait Subterms<M: Matcher> {
    fn find_subterm_same_shape(&self, term: &Term<M>) -> Option<&Term<M>>;

    fn find_subterm<P: Fn(&&Term<M>) -> bool + Copy>(&self, filter: P) -> Option<&Term<M>>;

    fn filter_grand_subterms<P: Fn(&Term<M>, &Term<M>) -> bool + Copy>(
        &self,
        predicate: P,
    ) -> Vec<((usize, &Term<M>), &Term<M>)>;
}

impl<M: Matcher> Subterms<M> for Vec<Term<M>> {
    /// Finds a subterm with the same type as `term`
    fn find_subterm_same_shape(&self, term: &Term<M>) -> Option<&Term<M>> {
        self.find_subterm(|subterm| term.get_type_shape() == subterm.get_type_shape())
    }

    /// Finds a subterm in this vector
    fn find_subterm<P: Fn(&&Term<M>) -> bool + Copy>(&self, predicate: P) -> Option<&Term<M>> {
        self.iter().find(predicate)
    }

    /// Finds all grand children/subterms which match the predicate.
    ///
    /// A grand subterm is defined as a subterm of a term in `self`.
    ///
    /// Each grand subterm is returned together with its parent and the index of the parent in `self`.
    fn filter_grand_subterms<P: Fn(&Term<M>, &Term<M>) -> bool + Copy>(
        &self,
        predicate: P,
    ) -> Vec<((usize, &Term<M>), &Term<M>)> {
        let mut found_grand_subterms = vec![];

        for (i, subterm) in self.iter().enumerate() {
            match &subterm {
                Term::Variable(_) => {}
                Term::Application(_, grand_subterms) => {
                    found_grand_subterms.extend(
                        grand_subterms
                            .iter()
                            .filter(|grand_subterm| predicate(subterm, grand_subterm))
                            .map(|grand_subterm| ((i, subterm), grand_subterm)),
                    );
                }
            };
        }

        found_grand_subterms
    }
}

/// `tlspuffin::term::op_impl::op_protocol_version` -> `op_protocol_version`
/// `alloc::Vec<rustls::msgs::handshake::ServerExtension>` -> `Vec<rustls::msgs::handshake::ServerExtension>`
pub(crate) fn remove_prefix(str: &str) -> String {
    let split: Option<(&str, &str)> = str.split('<').collect_tuple();

    if let Some((non_generic, generic)) = split {
        let generic = &generic[0..generic.len() - 1];

        if let Some(pos) = non_generic.rfind("::") {
            non_generic[pos + 2..].to_string() + "<" + &remove_prefix(generic) + ">"
        } else {
            non_generic.to_string() + "<" + &remove_prefix(generic) + ">"
        }
    } else if let Some(pos) = str.rfind("::") {
        str[pos + 2..].to_string()
    } else {
        str.to_string()
    }
}

pub(crate) fn remove_fn_prefix(str: &str) -> String {
    str.replace("fn_", "")
}

#[cfg(test)]
mod tests {
    use crate::algebra::remove_prefix;

    #[test]
    fn test_normal() {
        assert_eq!(remove_prefix("test::test::Test"), "Test");
    }

    #[test]
    fn test_generic() {
        assert_eq!(remove_prefix("test::test::Test<Asdf>"), "Test<Asdf>");
    }

    #[test]
    fn test_generic_recursive() {
        assert_eq!(remove_prefix("test::test::Test<asdf::Asdf>"), "Test<Asdf>");
    }
}