1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
//! This module define the execution [`Trace`]s.
//!
//! Each [`Trace`]s consist of several [`Step`]s, of which each has either an [`OutputAction`] or
//! [`InputAction`]. This is a declarative way of modeling communication between [`Agent`]s. The
//! [`TraceContext`] holds data, also known as [`Knowledge`], which is created by [`Agent`]s
//! during the concrete execution of the Trace. It also holds the [`Agent`]s with the references to
//! concrete PUT.
//!
//! ### Serializability of Traces
//!
//! Each trace is serializable to JSON or even binary data. This helps at reproducing discovered
//! security vulnerabilities during fuzzing. If a trace triggers a security vulnerability we can
//! store it on disk and replay it when investigating the case.
//! As traces depend on concrete implementations as discussed in the next section we need to link
//! serialized data like strings or numerical IDs to functions implemented in Rust.

use core::fmt;
use std::any::TypeId;
use std::collections::HashMap;
use std::fmt::Debug;
use std::hash::Hash;
use std::marker::PhantomData;
use std::vec::IntoIter;

use clap::error::Result;
use serde::{Deserialize, Serialize};

use crate::agent::{Agent, AgentDescriptor, AgentName};
use crate::algebra::bitstrings::Payloads;
use crate::algebra::dynamic_function::TypeShape;
use crate::algebra::{remove_prefix, Matcher, Term, TermType};
use crate::claims::{GlobalClaimList, SecurityViolationPolicy};
use crate::error::Error;
use crate::protocol::{EvaluatedTerm, ProtocolBehavior, ProtocolTypes};
use crate::put::PutDescriptor;
use crate::put_registry::PutRegistry;
use crate::stream::Stream;
use crate::trace::Action::Input;

#[derive(Debug, Deserialize, Serialize, Clone, Hash, Eq, PartialEq)]
pub struct Query<M> {
    pub source: Option<Source>,
    pub matcher: Option<M>,
    pub counter: u16, // in case an agent sends multiple messages of the same type
}

impl<M: Matcher> fmt::Display for Query<M> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "({:?}, {})[{:?}]",
            self.source, self.counter, self.matcher
        )
    }
}

/// [Source] stores the origin of a knowledge, whether the agent name or
/// the label of the precomputation that produced it
#[derive(Debug, PartialEq, Eq, Clone, Hash, Deserialize, Serialize)]
pub enum Source {
    Agent(AgentName),
    Label(Option<String>),
}

impl fmt::Display for Source {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Self::Agent(x) => write!(f, "agent:{x}"),
            Self::Label(x) => write!(f, "label:{x:?}"),
        }
    }
}

/// [Knowledge] describes an atomic piece of knowledge inferred by the
/// [`crate::protocol::Extractable::extract_knowledge`] function
/// [Knowledge] is made of the data, the source of the output, the
/// TLS message type and the internal type.
#[derive(Debug)]
pub struct Knowledge<'a, PT: ProtocolTypes> {
    pub source: &'a Source,
    pub matcher: Option<PT::Matcher>,
    pub data: &'a dyn EvaluatedTerm<PT>,
}

/// [`RawKnowledge`] stores
#[derive(Debug)]
pub struct RawKnowledge<PT: ProtocolTypes> {
    pub source: Source,
    pub matcher: Option<PT::Matcher>,
    pub associated_term: Option<Term<PT>>,
    pub data: Box<dyn EvaluatedTerm<PT>>,
}

impl<PT: ProtocolTypes> fmt::Display for RawKnowledge<PT> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "({})/{:?}", self.source, self.matcher)
    }
}

impl<'a, PT: ProtocolTypes> IntoIterator for &'a RawKnowledge<PT> {
    type IntoIter = IntoIter<Knowledge<'a, PT>>;
    type Item = Knowledge<'a, PT>;

    fn into_iter(self) -> Self::IntoIter {
        let mut knowledges = vec![];
        let _ = self
            .data
            .extract_knowledge(&mut knowledges, self.matcher.clone(), &self.source);
        knowledges.into_iter()
    }
}

impl<PT: ProtocolTypes> Knowledge<'_, PT> {
    pub fn specificity(&self) -> u32 {
        self.matcher.specificity()
    }
}

impl<PT: ProtocolTypes> Knowledge<'_, PT> {
    pub fn debug_print<PB>(&self, ctx: &TraceContext<PB>, source: &Source)
    where
        PB: ProtocolBehavior<ProtocolTypes = PT>,
    {
        let data_type_id = self.data.type_id();
        log::debug!(
            "New knowledge {}: {}  (counter: {})",
            &self,
            remove_prefix(self.data.type_name()),
            ctx.number_matching_message_with_source(source.clone(), data_type_id, &self.matcher)
        );
        log::debug!("Knowledge data: {:?}", self.data);
    }
}

impl<PT: ProtocolTypes> fmt::Display for Knowledge<'_, PT> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "({})/{:?}", self.source, self.matcher)
    }
}

#[derive(Debug, Default)]
pub struct KnowledgeStore<PT: ProtocolTypes> {
    raw_knowledge: Vec<RawKnowledge<PT>>,
}

impl<PT: ProtocolTypes> KnowledgeStore<PT> {
    #[must_use]
    pub const fn new() -> Self {
        Self {
            raw_knowledge: vec![],
        }
    }

    pub fn add_raw_knowledge<T: EvaluatedTerm<PT> + 'static>(
        &mut self,
        data: T,
        source: Source,
        term: Option<Term<PT>>,
    ) {
        log::trace!("Adding raw knowledge for {:?}", &data);

        self.raw_knowledge.push(RawKnowledge {
            source,
            matcher: None,
            data: Box::new(data),
            associated_term: term,
        });
    }

    pub fn add_raw_boxed_knowledge(
        &mut self,
        data: Box<dyn EvaluatedTerm<PT>>,
        source: Source,
        term: Option<Term<PT>>,
    ) {
        log::trace!("Adding raw knowledge : {:?}", &data);

        self.raw_knowledge.push(RawKnowledge {
            source,
            matcher: None,
            data,
            associated_term: term,
        });
    }

    pub fn number_matching_message_with_source(
        &self,
        source: Source,
        type_id: TypeId,
        tls_message_type: &Option<PT::Matcher>,
    ) -> usize {
        self.raw_knowledge
            .iter()
            .filter(|raw| raw.source == source)
            .flatten()
            .filter(|knowledge| {
                knowledge.matcher == *tls_message_type && knowledge.data.type_id() == type_id
            })
            .count()
    }

    /// Count the number of sub-messages of type `type_id` in the output message.
    pub fn number_matching_message(
        &self,
        type_id: TypeId,
        tls_message_type: &Option<PT::Matcher>,
    ) -> usize {
        self.raw_knowledge
            .iter()
            .flatten()
            .filter(|knowledge| {
                knowledge.matcher == *tls_message_type && knowledge.data.type_id() == type_id
            })
            .count()
    }

    /// Returns the variable which matches best -> highest specificity
    /// If we want a variable with lower specificity, then we can just query less specific
    pub fn find_variable(
        &self,
        query_type_shape: TypeShape<PT>,
        query: &Query<PT::Matcher>,
    ) -> Option<&(dyn EvaluatedTerm<PT>)> {
        log::trace!(
            "Looking for variable {:?} with query_type_shape {:?} and query {:?}",
            self,
            query_type_shape,
            query
        );
        let query_type_id: TypeId = query_type_shape.into();

        let mut possibilities: Vec<Knowledge<PT>> = self
            .raw_knowledge
            .iter()
            .filter(|raw| (query.source.is_none() || query.source.as_ref().unwrap() == &raw.source))
            .flatten()
            .filter(|knowledge| {
                query_type_id == knowledge.data.type_id()
                    && knowledge.matcher.matches(&query.matcher)
            })
            .collect();

        possibilities.sort_by_key(Knowledge::specificity);

        possibilities
            .get(query.counter as usize)
            .map(|possibility| possibility.data)
    }
}

#[derive(Debug)]
pub struct Spawner<PB: ProtocolBehavior> {
    registry: PutRegistry<PB>,
    descriptors: HashMap<AgentName, PutDescriptor>,
    default: PutDescriptor,
}

impl<PB: ProtocolBehavior> Spawner<PB> {
    pub fn new(registry: impl Into<PutRegistry<PB>>) -> Self {
        let registry = registry.into();
        Self {
            default: registry.default().name().into(),
            registry,
            descriptors: Default::default(),
        }
    }

    #[must_use]
    pub fn with_mapping(mut self, descriptors: &[(AgentName, PutDescriptor)]) -> Self {
        self.descriptors.extend(descriptors.iter().cloned());
        self
    }

    pub fn with_default(mut self, put: impl Into<PutDescriptor>) -> Self {
        self.default = put.into();
        self
    }

    pub fn spawn(
        &self,
        claims: &GlobalClaimList<PB::Claim>,
        descriptor: &AgentDescriptor,
    ) -> Result<Agent<PB>, Error> {
        let put_descriptor = self
            .descriptors
            .get(&descriptor.name)
            .cloned()
            .unwrap_or_else(|| self.default.clone());

        let factory = self
            .registry
            .find_by_id(&put_descriptor.factory)
            .ok_or_else(|| {
                Error::Agent(format!(
                    "unable to find PUT {} factory in binary",
                    &put_descriptor.factory
                ))
            })?;

        let put = factory.create(descriptor, claims, &put_descriptor.options)?;
        Ok(Agent::new(descriptor.clone(), put))
    }
}

impl<PB: ProtocolBehavior + PartialEq> PartialEq for Spawner<PB> {
    fn eq(&self, other: &Self) -> bool {
        self.registry == other.registry
            && self.descriptors == other.descriptors
            && self.default == other.default
    }
}

impl<PB: ProtocolBehavior> Clone for Spawner<PB> {
    fn clone(&self) -> Self {
        Self {
            registry: self.registry.clone(),
            descriptors: self.descriptors.clone(),
            default: self.default.clone(),
        }
    }
}

/// The [`TraceContext`] represents the state of an execution.
///
/// The [`TraceContext`] contains a list of [`EvaluatedTerm`], which is known as the knowledge
/// of the attacker. [`EvaluatedTerm`] can contain data of various types like for example
/// client and server extensions, cipher suits or session ID It also holds the concrete
/// references to the [`Agent`]s and the underlying streams, which contain the messages
/// which have need exchanged and are not yet processed by an output step.
#[derive(Debug)]
pub struct TraceContext<PB: ProtocolBehavior> {
    /// The knowledge of the attacker
    pub knowledge_store: KnowledgeStore<PB::ProtocolTypes>,
    agents: Vec<Agent<PB>>,
    claims: GlobalClaimList<PB::Claim>,

    spawner: Spawner<PB>,

    phantom: PhantomData<PB>,
}

impl<PB: ProtocolBehavior> fmt::Display for TraceContext<PB> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "Knowledge [not displaying other fields] (size={}):",
            self.knowledge_store.raw_knowledge.len()
        )?;
        for k in &self.knowledge_store.raw_knowledge {
            write!(f, "\n   {k},          --  {k:?}")?;
        }
        Ok(())
    }
}

impl<PB: ProtocolBehavior + PartialEq> PartialEq for TraceContext<PB> {
    fn eq(&self, other: &Self) -> bool {
        self.agents == other.agents
            && self.spawner == other.spawner
            && format!("{:?}", self.knowledge_store.raw_knowledge)
                == format!("{:?}", other.knowledge_store.raw_knowledge)
            && format!("{:?}", self.claims) == format!("{:?}", other.claims)
    }
}

impl<PB: ProtocolBehavior> TraceContext<PB> {
    #[must_use]
    pub fn new(spawner: Spawner<PB>) -> Self {
        // We keep a global list of all claims throughout the execution. Each claim is identified
        // by the AgentName. A rename of an Agent does not interfere with this.
        let claims = GlobalClaimList::<PB::Claim>::new();

        Self {
            knowledge_store: KnowledgeStore::new(),
            agents: vec![],
            claims,
            spawner,
            phantom: Default::default(),
        }
    }

    pub fn verify_security_violations(&self) -> Result<(), Error> {
        let claims = self.claims.deref_borrow();
        claims.log();
        if let Some(msg) = PB::SecurityViolationPolicy::check_violation(claims.slice()) {
            // [TODO] Lucca: versus checking at each step ? Could detect violation earlier, before a
            // blocking state is reached ? [BENCH] benchmark the efficiency loss of doing so
            // Max: We only check for Finished claims right now, so its fine to check only at the
            // end
            return Err(Error::SecurityClaim(msg));
        }
        Ok(())
    }

    /// Count the number of sub-messages of type `type_id` with the correct source
    pub fn number_matching_message_with_source(
        &self,
        source: Source,
        type_id: TypeId,
        tls_message_type: &Option<<PB::ProtocolTypes as ProtocolTypes>::Matcher>,
    ) -> usize {
        self.knowledge_store
            .number_matching_message_with_source(source, type_id, tls_message_type)
    }

    /// Count the number of sub-messages of type `type_id` in the output message.
    pub fn number_matching_message(
        &self,
        type_id: TypeId,
        tls_message_type: &Option<<PB::ProtocolTypes as ProtocolTypes>::Matcher>,
    ) -> usize {
        self.knowledge_store
            .number_matching_message(type_id, tls_message_type)
    }

    #[must_use]
    pub fn find_claim(
        &self,
        agent_name: AgentName,
        query_type_shape: TypeShape<PB::ProtocolTypes>,
    ) -> Option<Box<dyn EvaluatedTerm<PB::ProtocolTypes>>> {
        self.claims
            .deref_borrow()
            .find_last_claim(agent_name, query_type_shape)
            .map(super::claims::Claim::inner)
    }

    /// Returns the variable which matches best -> highest specificity
    /// If we want a variable with lower specificity, then we can just query less specific
    pub fn find_variable(
        &self,
        query_type_shape: TypeShape<PB::ProtocolTypes>,
        query: &Query<<PB::ProtocolTypes as ProtocolTypes>::Matcher>,
    ) -> Option<&(dyn EvaluatedTerm<PB::ProtocolTypes>)> {
        log::trace!(
            "Looking for variable in {:?} with query {:?}",
            self.knowledge_store,
            query
        );
        self.knowledge_store.find_variable(query_type_shape, query)
    }

    pub fn spawn(&mut self, descriptor: &AgentDescriptor) -> Result<(), Error> {
        let agent = self.spawner.spawn(&self.claims, descriptor)?;
        self.agents.push(agent);

        Ok(())
    }

    pub fn find_agent_mut(&mut self, name: AgentName) -> Result<&mut Agent<PB>, Error> {
        let mut iter = self.agents.iter_mut();

        iter.find(|agent| agent.name() == name).ok_or_else(|| {
            Error::Agent(format!(
                "Could not find agent {name}. Did you forget to call spawn_agents?"
            ))
        })
    }

    pub fn find_agent(&self, name: AgentName) -> Result<&Agent<PB>, Error> {
        let mut iter = self.agents.iter();
        iter.find(|agent| agent.name() == name).ok_or_else(|| {
            Error::Agent(format!(
                "Could not find agent {name}. Did you forget to call spawn_agents?"
            ))
        })
    }

    #[must_use]
    pub fn agents_successful(&self) -> bool {
        self.agents
            .iter()
            .all(super::agent::Agent::is_state_successful)
    }
}

#[derive(Clone, Deserialize, Serialize, Hash)]
#[serde(bound = "PT: ProtocolTypes")]
pub struct Trace<PT: ProtocolTypes> {
    pub descriptors: Vec<AgentDescriptor>,
    pub steps: Vec<Step<PT>>,
    pub prior_traces: Vec<Trace<PT>>,
}

/// A [`Trace`] consists of several [`Step`]s. Each has either a [`OutputAction`] or an
/// [`InputAction`]. Each [`Step`]s references an [`Agent`] by name. Furthermore, a trace also has a
/// list of *`AgentDescriptors`* which act like a blueprint to spawn [`Agent`]s with a corresponding
/// server or client role and a specific TLs version. Essentially they are an [`Agent`] without a
/// stream.
impl<PT: ProtocolTypes> Trace<PT> {
    pub fn spawn_agents<PB: ProtocolBehavior>(
        &self,
        ctx: &mut TraceContext<PB>,
    ) -> Result<(), Error> {
        for descriptor in &self.descriptors {
            if let Some(reusable) = ctx
                .agents
                .iter_mut()
                .find(|existing| existing.is_reusable_with(descriptor))
            {
                // rename if it already exists and we want to reuse
                reusable.reset(descriptor.name)?;
            } else {
                // only spawn completely new if not yet existing
                ctx.spawn(descriptor)?;
            };
        }

        Ok(())
    }

    pub fn execute_until_step<PB>(
        &self,
        ctx: &mut TraceContext<PB>,
        nb_steps: usize,
    ) -> Result<(), Error>
    where
        PB: ProtocolBehavior<ProtocolTypes = PT>,
    {
        for trace in &self.prior_traces {
            trace.execute(ctx)?;
        }

        self.spawn_agents(ctx)?;
        let steps = &self.steps[0..nb_steps];
        for (i, step) in steps.iter().enumerate() {
            log::debug!("Executing step #{}", i);
            step.execute(ctx)?;

            ctx.verify_security_violations()?;
        }

        Ok(())
    }

    pub fn execute<PB>(&self, ctx: &mut TraceContext<PB>) -> Result<(), Error>
    where
        PB: ProtocolBehavior<ProtocolTypes = PT>,
    {
        self.execute_until_step(ctx, self.steps.len())
    }

    pub fn serialize_postcard(&self) -> Result<Vec<u8>, postcard::Error> {
        postcard::to_allocvec(&self)
    }

    pub fn deserialize_postcard(slice: &[u8]) -> Result<Self, postcard::Error> {
        postcard::from_bytes::<Self>(slice)
    }

    #[must_use]
    pub fn all_payloads(&self) -> Vec<&Payloads> {
        self.steps
            .iter()
            .filter_map(|e| match &e.action {
                Input(r) => Some(&r.recipe),
                _ => None,
            })
            .flat_map(|t| t.all_payloads())
            .collect()
    }

    pub fn all_payloads_mut(&mut self) -> Vec<&mut Payloads> {
        self.steps
            .iter_mut()
            .filter_map(|e| match &mut e.action {
                Input(r) => Some(&mut r.recipe),
                _ => None,
            })
            .flat_map(|t| t.all_payloads_mut())
            .collect()
    }

    #[must_use]
    pub fn is_symbolic(&self) -> bool {
        self.steps.iter().all(|e| match &e.action {
            Input(r) => r.recipe.is_symbolic(),
            _ => true,
        })
    }
}

impl<PT: ProtocolTypes> fmt::Debug for Trace<PT> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Trace with {} steps", self.steps.len())
    }
}

impl<PT: ProtocolTypes> fmt::Display for Trace<PT> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Trace:")?;
        for step in &self.steps {
            write!(f, "\n{} -> {}", step.agent, step.action)?;
        }
        Ok(())
    }
}

impl<PT: ProtocolTypes> AsRef<Self> for Trace<PT> {
    fn as_ref(&self) -> &Self {
        self
    }
}

#[derive(Serialize, Deserialize, Clone, Debug, Hash)]
#[serde(bound = "PT: ProtocolTypes")]
pub struct Step<PT: ProtocolTypes> {
    pub agent: AgentName,
    pub action: Action<PT>,
}

impl<PT: ProtocolTypes> Step<PT> {
    pub fn execute<PB>(&self, ctx: &mut TraceContext<PB>) -> Result<(), Error>
    where
        PB: ProtocolBehavior<ProtocolTypes = PT>,
    {
        match &self.action {
            Action::Input(input) => input.execute(self.agent, ctx).and_then(|()| {
                // NOTE force output after each InputAction step
                (OutputAction {
                    phantom: Default::default(),
                })
                .execute(self.agent, ctx)
            }),
            Action::Output(output) => output.execute(self.agent, ctx),
        }
    }
}

/// There are two action types [`OutputAction`] and [`InputAction`].
///
/// Both actions drive the internal state machine of an [`Agent`] forward by calling `progress()`.
/// The [`OutputAction`] first forwards the state machine and then extracts knowledge from the
/// TLS messages produced by the underlying stream by calling  `take_message_from_outbound(...)`.
/// The [`InputAction`] evaluates the recipe term and injects the newly produced message
/// into the *inbound channel* of the [`Agent`] referenced through the corresponding [`Step`]s
/// by calling `add_to_inbound(...)` and then drives the state machine forward.
/// Therefore, the difference is that one step *increases* the knowledge of the attacker,
/// whereas the other action *uses* the available knowledge.
#[derive(Serialize, Deserialize, Clone, Debug, Hash)]
#[serde(bound = "PT: ProtocolTypes")]
pub enum Action<PT: ProtocolTypes> {
    Input(InputAction<PT>),
    Output(OutputAction<PT>),
}

impl<PT: ProtocolTypes> fmt::Display for Action<PT> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::Input(input) => write!(f, "{input}"),
            Self::Output(output) => write!(f, "{output}"),
        }
    }
}

/// Advance the [`Agent`]'s state and process the produced output.
///
/// The [`OutputAction`] first forwards the state machine and then extracts knowledge from the TLS
/// messages produced by the underlying stream by calling  `take_message_from_outbound(...)`. An
/// output action is automatically called after each input step.
#[derive(Serialize, Deserialize, Clone, Debug, Hash)]
pub struct OutputAction<PT> {
    phantom: PhantomData<PT>,
}

impl<PT: ProtocolTypes> OutputAction<PT> {
    #[must_use]
    pub fn new_step(agent: AgentName) -> Step<PT> {
        Step {
            agent,
            action: Action::Output(Self {
                phantom: Default::default(),
            }),
        }
    }

    fn execute<PB>(&self, agent_name: AgentName, ctx: &mut TraceContext<PB>) -> Result<(), Error>
    where
        PB: ProtocolBehavior<ProtocolTypes = PT>,
    {
        let source = Source::Agent(agent_name);
        let agent = ctx.find_agent_mut(agent_name)?;

        agent.progress()?;

        if let Some(opaque_flight) = agent.take_message_from_outbound()? {
            ctx.knowledge_store
                .add_raw_knowledge(opaque_flight.clone(), source.clone(), None);

            if let Ok(flight) = TryInto::<PB::ProtocolMessageFlight>::try_into(opaque_flight) {
                ctx.knowledge_store.add_raw_knowledge(flight, source, None);
            }
        }

        Ok(())
    }
}

impl<PT: ProtocolTypes> fmt::Display for OutputAction<PT> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "OutputAction")
    }
}

#[derive(Serialize, Deserialize, Clone, Debug, Hash)]
#[serde(bound = "PT: ProtocolTypes")]
pub struct Precomputation<PT: ProtocolTypes> {
    pub label: Option<String>,
    pub recipe: Term<PT>,
}

/// Provide inputs to the [`Agent`].
///
/// The [`InputAction`] evaluates the recipe term and injects the newly produced message
/// into the *inbound channel* of the [`Agent`] referenced through the corresponding [`Step`]s
/// by calling `add_to_inbound(...)` and then drives the state machine forward.
#[derive(Serialize, Deserialize, Clone, Debug, Hash)]
#[serde(bound = "PT: ProtocolTypes")]
pub struct InputAction<PT: ProtocolTypes> {
    pub precomputations: Vec<Precomputation<PT>>,
    pub recipe: Term<PT>,
}

/// Processes messages in the inbound channel. Uses the recipe field to evaluate to a rustls Message
/// or a `MultiMessage`.
impl<PT: ProtocolTypes> InputAction<PT> {
    pub const fn new_step(agent: AgentName, recipe: Term<PT>) -> Step<PT> {
        Step {
            agent,
            action: Action::Input(Self {
                recipe,
                precomputations: vec![],
            }),
        }
    }

    fn execute<PB>(&self, agent_name: AgentName, ctx: &mut TraceContext<PB>) -> Result<(), Error>
    where
        PB: ProtocolBehavior<ProtocolTypes = PT>,
    {
        for precomputation in &self.precomputations {
            let eval = precomputation.recipe.evaluate_dy(ctx)?; // We do not accept payloads in precomputation recipes
            ctx.knowledge_store.add_raw_boxed_knowledge(
                eval,
                Source::Label(precomputation.label.clone()),
                Some(precomputation.recipe.clone()),
            );
        }

        let message = self.recipe.evaluate(ctx)?;
        let agent = ctx.find_agent_mut(agent_name)?;

        agent.add_to_inbound(&message);
        agent.progress()
    }
}

impl<PT: ProtocolTypes> fmt::Display for InputAction<PT> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "InputAction:\n{}", self.recipe)
    }
}

/// This macro defines the precomputation syntax to add precomputations to an input action step
///
/// Example of precomputation with TLS
///
/// ```ignore
/// input_action! {
///     // Here we are precomputing a decryption of TLS extension and using it in the following term
///     "decrypted_extensions" = term!{fn_decrypt_handshake_flight(
///         ((server, 0)/MessageFlight),
///         (@server_hello_transcript),
///         (fn_get_server_key_share(((server, 0)[Some(TlsQueryMatcher::Handshake(Some(HandshakeType::ServerHello)))]))),
///         fn_no_psk,
///         fn_named_group_secp384r1,
///         fn_true,
///         fn_seq_0  // sequence 0
///     )}
///     =>
///     // This term will be sent to the PUT by the input action
///     term!{fn_append_transcript(
///         (@server_hello_transcript),
///         (
///             // We can query our precomputation
///             (!"decrypted_extensions", 0)[
///                 Some(TlsQueryMatcher::Handshake(Some(HandshakeType::EncryptedExtensions)))
///             ] / Message
///         )
///     )}
/// };
/// ```
///
/// The following syntaxes are accepted :
/// ```ignore
/// # use puffin::input_action;
/// # use puffin::term;
/// # use puffin::trace::Precomputation;
/// # use puffin::trace::InputAction;
///
/// input_action!{term!{fn_msg()}};
/// input_action!{term!{fn_precomputation()} => term!{fn_msg()}};
/// input_action!{"this_is_a_label" = term!{fn_precomputation()} => term!{fn_msg()}};
/// input_action!{
///     "this_is_a_label" = term!{fn_precomputation_1()} =>
///         term!{fn_precomputation_2()} =>
///             term!{fn_msg()}
/// };
/// // the latter is equivalent to
/// input_action!{
///     "this_is_a_label" = term!{fn_precomputation_1()}, term!{fn_precomputation_2()} =>
///         term!{fn_msg()}
/// };
/// ```
///
/// All the previous examples respectively produce
/// ```ignore
/// # use puffin::trace::Precomputation;
/// # use puffin::trace::InputAction;
/// # use puffin::term;
/// # use crate::algebra::test_signature::fn_msg;
///
/// InputAction {
///     recipe: term!{fn_msg()},
///     precomputations: vec![],
/// };
/// InputAction {
///     recipe: term!{fn_msg()},
///     precomputations: vec![Precomputation{label: "".into(), recipe: term!{fn_precomputation()}}],
/// };
/// InputAction {
///     recipe: term!{fn_msg()},
///     precomputations: vec![Precomputation{label: "this_is_a_label".into(), recipe:
/// term!{fn_precomputation()}}], };
/// InputAction {
///     recipe: term!{fn_msg()},
///     precomputations: vec![
///         Precomputation{label: "this_is_a_label".into(), recipe: term!{fn_precomputation_1()}},
///         Precomputation{label: "".into(), recipe: term!{fn_precomputation_2()}}
///     ],
/// };
/// ```
#[macro_export]
macro_rules! input_action {
    (@internal [$($label:expr, $precomp:expr);+] $recipe:expr) => {
        InputAction {
            recipe: $recipe,
            precomputations: vec![$(Precomputation{label: $label, recipe: $precomp}),*],
        }
    };

    (@internal [$($precomps:tt)+] $other_name:literal = $other_precomp:expr => $($tail:tt)+) => {
        input_action!{@internal [$($precomps)+; Some($other_name.into()), $other_precomp] $($tail)+ }
    };

    (@internal [$($precomps:tt)+] $other_name:literal = $other_precomp:expr, $($tail:tt)+) => {
        input_action!{@internal [$($precomps)+; Some($other_name.into()), $other_precomp] $($tail)+ }
    };

    (@internal [$($precomps:tt)+] $other_precomp:expr => $($tail:tt)+) => {
        input_action!{@internal [$($precomps)+; None, $other_precomp] $($tail)+ }
    };

    (@internal [$($precomps:tt)+] $other_precomp:expr, $($tail:tt)+) => {
        input_action!{@internal [$($precomps)+; None, $other_precomp] $($tail)+ }
    };

    ($precomp_name:literal = $precomp:expr => $($tail:tt)+) => {
        input_action!{@internal [Some($precomp_name.into()), $precomp] $($tail)+ }
    };

    ($precomp_name:literal = $precomp:expr , $($tail:tt)+) => {
        input_action!{@internal [Some($precomp_name.into()), $precomp] $($tail)+ }
    };

    ($precomp:expr => $($tail:tt)+) => {
        input_action!{@internal [None, $precomp] $($tail)+ }
    };

    ($precomp:expr, $($tail:tt)+) => {
        input_action!{@internal [None, $precomp] $($tail)+ }
    };

    ($recipe:expr) => {
        InputAction {
            recipe: $recipe,
            precomputations: vec![],
        }
    };
}

#[cfg(test)]
mod tests {
    use crate::algebra::test_signature::{
        fn_encrypt12, fn_finished, fn_new_random, fn_seq_0, fn_seq_1,
    };
    use crate::term;
    use crate::trace::{InputAction, Precomputation};

    #[test]
    fn test_input_action_macro() {
        let action0 = input_action! {term!{fn_seq_0()}};
        assert_eq!(action0.precomputations.len(), 0);

        let action1 = input_action! {
            term!{fn_new_random()} =>
                "a" = term!{fn_new_random()} =>
                    term!{
                        fn_encrypt12(fn_finished,fn_seq_0)
                    }
        };
        assert_eq!(action1.precomputations.len(), 2);
        assert_eq!(action1.precomputations[0].label, None);
        assert_eq!(action1.precomputations[1].label, Some("a".into()));

        let action2 = input_action! {
            "a" = term!{fn_new_random()}, "b" = term!{fn_finished()} =>
                term!{
                    fn_encrypt12(fn_finished,fn_seq_0)
                }
        };
        assert_eq!(action2.precomputations.len(), 2);
        assert_eq!(action2.precomputations[0].label, Some("a".into()));
        assert_eq!(action2.precomputations[1].label, Some("b".into()));

        let action3 = input_action! {
            "a" = term!{fn_new_random()} => term!{fn_finished()} =>
                term!{
                    fn_encrypt12(fn_finished,fn_seq_0)
                }
        };
        assert_eq!(action3.precomputations.len(), 2);
        assert_eq!(action3.precomputations[0].label, Some("a".into()));
        assert_eq!(action3.precomputations[1].label, None);

        let action4 = input_action! {
            term!{fn_finished()}, "a" = term!{fn_new_random()} =>
                term!{
                    fn_encrypt12(fn_finished,fn_seq_0)
                }
        };
        assert_eq!(action4.precomputations.len(), 2);
        assert_eq!(action4.precomputations[0].label, None);
        assert_eq!(action4.precomputations[1].label, Some("a".into()));

        let action5 = input_action! {
            term!{fn_finished()}, "a" = term!{fn_new_random()} =>
                "b" = term!{fn_seq_0()} =>
                    term!{fn_seq_1()} =>
                        "c" = term!{fn_seq_0()} =>
                            term!{fn_seq_0()}, "d" = term!{fn_seq_0()}, "e" = term!{fn_seq_0()} =>
                                term!{
                                    fn_encrypt12(fn_finished,fn_seq_0)
                                }
        };
        assert_eq!(action5.precomputations.len(), 8);
        assert_eq!(action5.precomputations[0].label, None);
        assert_eq!(action5.precomputations[1].label, Some("a".into()));
        assert_eq!(action5.precomputations[2].label, Some("b".into()));
        assert_eq!(action5.precomputations[3].label, None);
        assert_eq!(action5.precomputations[4].label, Some("c".into()));
        assert_eq!(action5.precomputations[5].label, None);
        assert_eq!(action5.precomputations[6].label, Some("d".into()));
        assert_eq!(action5.precomputations[7].label, Some("e".into()));
    }
}