1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
use ring::{aead, hkdf};

/// This module contains optional APIs for implementing QUIC TLS.
use crate::tls::rustls::cipher::{Iv, IvLen};
use crate::tls::rustls::{
    error::Error,
    msgs::enums::AlertDescription,
    suites::BulkAlgorithm,
    tls13::{key_schedule::hkdf_expand, Tls13CipherSuite, TLS13_AES_128_GCM_SHA256_INTERNAL},
};

/// Secrets used to encrypt/decrypt traffic
#[derive(Clone, Debug)]
pub struct Secrets {
    /// Secret used to encrypt packets transmitted by the client
    client: hkdf::Prk,
    /// Secret used to encrypt packets transmitted by the server
    server: hkdf::Prk,
    /// Cipher suite used with these secrets
    suite: &'static Tls13CipherSuite,
    is_client: bool,
}

impl Secrets {
    pub fn new(
        client: hkdf::Prk,
        server: hkdf::Prk,
        suite: &'static Tls13CipherSuite,
        is_client: bool,
    ) -> Self {
        Self {
            client,
            server,
            suite,
            is_client,
        }
    }

    /// Derive the next set of packet keys
    pub fn next_packet_keys(&mut self) -> PacketKeySet {
        let keys = PacketKeySet::new(self);
        self.update();
        keys
    }

    fn update(&mut self) {
        let hkdf_alg = self.suite.hkdf_algorithm;
        self.client = hkdf_expand(&self.client, hkdf_alg, b"quic ku", &[]);
        self.server = hkdf_expand(&self.server, hkdf_alg, b"quic ku", &[]);
    }

    fn local_remote(&self) -> (&hkdf::Prk, &hkdf::Prk) {
        if self.is_client {
            (&self.client, &self.server)
        } else {
            (&self.server, &self.client)
        }
    }
}

/// Generic methods for QUIC sessions
pub trait QuicExt {
    /// Return the TLS-encoded transport parameters for the session's peer.
    ///
    /// While the transport parameters are technically available prior to the
    /// completion of the handshake, they cannot be fully trusted until the
    /// handshake completes, and reliance on them should be minimized.
    /// However, any tampering with the parameters will cause the handshake
    /// to fail.
    fn quic_transport_parameters(&self) -> Option<&[u8]>;

    /// Compute the keys for encrypting/decrypting 0-RTT packets, if available
    fn zero_rtt_keys(&self) -> Option<DirectionalKeys>;

    /// Consume unencrypted TLS handshake data.
    ///
    /// Handshake data obtained from separate encryption levels should be supplied in separate calls.
    fn read_hs(&mut self, plaintext: &[u8]) -> Result<(), Error>;

    /// Emit unencrypted TLS handshake data.
    ///
    /// When this returns `Some(_)`, the new keys must be used for future handshake data.
    fn write_hs(&mut self, buf: &mut Vec<u8>) -> Option<KeyChange>;

    /// Emit the TLS description code of a fatal alert, if one has arisen.
    ///
    /// Check after `read_hs` returns `Err(_)`.
    fn alert(&self) -> Option<AlertDescription>;
}

/// Keys used to communicate in a single direction
pub struct DirectionalKeys {
    /// Encrypts or decrypts a packet's headers
    pub header: HeaderProtectionKey,
    /// Encrypts or decrypts the payload of a packet
    pub packet: PacketKey,
}

impl DirectionalKeys {
    pub fn new(suite: &'static Tls13CipherSuite, secret: &hkdf::Prk) -> Self {
        Self {
            header: HeaderProtectionKey::new(suite, secret),
            packet: PacketKey::new(suite, secret),
        }
    }
}

/// A QUIC header protection key
pub struct HeaderProtectionKey(aead::quic::HeaderProtectionKey);

impl HeaderProtectionKey {
    fn new(suite: &'static Tls13CipherSuite, secret: &hkdf::Prk) -> Self {
        let alg = match suite.common.bulk {
            BulkAlgorithm::Aes128Gcm => &aead::quic::AES_128,
            BulkAlgorithm::Aes256Gcm => &aead::quic::AES_256,
            BulkAlgorithm::Chacha20Poly1305 => &aead::quic::CHACHA20,
        };

        Self(hkdf_expand(secret, alg, b"quic hp", &[]))
    }

    /// Adds QUIC Header Protection.
    ///
    /// `sample` must contain the sample of encrypted payload; see
    /// [Header Protection Sample].
    ///
    /// `first` must reference the first byte of the header, referred to as
    /// `packet[0]` in [Header Protection Application].
    ///
    /// `packet_number` must reference the Packet Number field; this is
    /// `packet[pn_offset:pn_offset+pn_length]` in [Header Protection Application].
    ///
    /// Returns an error without modifying anything if `sample` is not
    /// the correct length (see [Header Protection Sample] and [`Self::sample_len()`]),
    /// or `packet_number` is longer than allowed (see [Packet Number Encoding and Decoding]).
    ///
    /// Otherwise, `first` and `packet_number` will have the header protection added.
    ///
    /// [Header Protection Application]: https://datatracker.ietf.org/doc/html/rfc9001#section-5.4.1
    /// [Header Protection Sample]: https://datatracker.ietf.org/doc/html/rfc9001#section-5.4.2
    /// [Packet Number Encoding and Decoding]: https://datatracker.ietf.org/doc/html/rfc9000#section-17.1
    #[inline]
    pub fn encrypt_in_place(
        &self,
        sample: &[u8],
        first: &mut u8,
        packet_number: &mut [u8],
    ) -> Result<(), Error> {
        self.xor_in_place(sample, first, packet_number, false)
    }

    /// Removes QUIC Header Protection.
    ///
    /// `sample` must contain the sample of encrypted payload; see
    /// [Header Protection Sample].
    ///
    /// `first` must reference the first byte of the header, referred to as
    /// `packet[0]` in [Header Protection Application].
    ///
    /// `packet_number` must reference the Packet Number field; this is
    /// `packet[pn_offset:pn_offset+pn_length]` in [Header Protection Application].
    ///
    /// Returns an error without modifying anything if `sample` is not
    /// the correct length (see [Header Protection Sample] and [`Self::sample_len()`]),
    /// or `packet_number` is longer than allowed (see
    /// [Packet Number Encoding and Decoding]).
    ///
    /// Otherwise, `first` and `packet_number` will have the header protection removed.
    ///
    /// [Header Protection Application]: https://datatracker.ietf.org/doc/html/rfc9001#section-5.4.1
    /// [Header Protection Sample]: https://datatracker.ietf.org/doc/html/rfc9001#section-5.4.2
    /// [Packet Number Encoding and Decoding]: https://datatracker.ietf.org/doc/html/rfc9000#section-17.1
    #[inline]
    pub fn decrypt_in_place(
        &self,
        sample: &[u8],
        first: &mut u8,
        packet_number: &mut [u8],
    ) -> Result<(), Error> {
        self.xor_in_place(sample, first, packet_number, true)
    }

    fn xor_in_place(
        &self,
        sample: &[u8],
        first: &mut u8,
        packet_number: &mut [u8],
        masked: bool,
    ) -> Result<(), Error> {
        // This implements [Header Protection Application] almost verbatim.

        let mask = self
            .0
            .new_mask(sample)
            .map_err(|_| Error::General("sample of invalid length".into()))?;

        // The `unwrap()` will not panic because `new_mask` returns a
        // non-empty result.
        let (first_mask, pn_mask) = mask.split_first().unwrap();

        // It is OK for the `mask` to be longer than `packet_number`,
        // but a valid `packet_number` will never be longer than `mask`.
        if packet_number.len() > pn_mask.len() {
            return Err(Error::General("packet number too long".into()));
        }

        // Infallible from this point on. Before this point, `first` and
        // `packet_number` are unchanged.

        const LONG_HEADER_FORM: u8 = 0x80;
        let bits = match *first & LONG_HEADER_FORM == LONG_HEADER_FORM {
            true => 0x0f,  // Long header: 4 bits masked
            false => 0x1f, // Short header: 5 bits masked
        };

        let first_plain = match masked {
            // When unmasking, use the packet length bits after unmasking
            true => *first ^ (first_mask & bits),
            // When masking, use the packet length bits before masking
            false => *first,
        };
        let pn_len = (first_plain & 0x03) as usize + 1;

        *first ^= first_mask & bits;
        for (dst, m) in packet_number.iter_mut().zip(pn_mask).take(pn_len) {
            *dst ^= m;
        }

        Ok(())
    }

    /// Expected sample length for the key's algorithm
    #[inline]
    pub fn sample_len(&self) -> usize {
        self.0.algorithm().sample_len()
    }
}

/// Keys to encrypt or decrypt the payload of a packet
pub struct PacketKey {
    /// Encrypts or decrypts a packet's payload
    key: aead::LessSafeKey,
    /// Computes unique nonces for each packet
    iv: Iv,
    /// The cipher suite used for this packet key
    suite: &'static Tls13CipherSuite,
}

impl PacketKey {
    fn new(suite: &'static Tls13CipherSuite, secret: &hkdf::Prk) -> Self {
        Self {
            key: aead::LessSafeKey::new(hkdf_expand(
                secret,
                suite.common.aead_algorithm,
                b"quic key",
                &[],
            )),
            iv: hkdf_expand(secret, IvLen, b"quic iv", &[]),
            suite,
        }
    }

    /// Encrypt a QUIC packet
    ///
    /// Takes a `packet_number`, used to derive the nonce; the packet `header`, which is used as
    /// the additional authenticated data; and the `payload`. The authentication tag is returned if
    /// encryption succeeds.
    ///
    /// Fails iff the payload is longer than allowed by the cipher suite's AEAD algorithm.
    pub fn encrypt_in_place(
        &self,
        packet_number: u64,
        header: &[u8],
        payload: &mut [u8],
    ) -> Result<Tag, Error> {
        let aad = aead::Aad::from(header);
        let nonce = nonce_for(packet_number, &self.iv);
        let tag = self
            .key
            .seal_in_place_separate_tag(nonce, aad, payload)
            .map_err(|_| Error::EncryptError)?;
        Ok(Tag(tag))
    }

    /// Decrypt a QUIC packet
    ///
    /// Takes the packet `header`, which is used as the additional authenticated data, and the
    /// `payload`, which includes the authentication tag.
    ///
    /// If the return value is `Ok`, the decrypted payload can be found in `payload`, up to the
    /// length found in the return value.
    pub fn decrypt_in_place<'a>(
        &self,
        packet_number: u64,
        header: &[u8],
        payload: &'a mut [u8],
    ) -> Result<&'a [u8], Error> {
        let payload_len = payload.len();
        let aad = aead::Aad::from(header);
        let nonce = nonce_for(packet_number, &self.iv);
        self.key
            .open_in_place(nonce, aad, payload)
            .map_err(|_| Error::DecryptError)?;

        let plain_len = payload_len - self.key.algorithm().tag_len();
        Ok(&payload[..plain_len])
    }

    /// Number of times the packet key can be used without sacrificing confidentiality
    ///
    /// See <https://www.rfc-editor.org/rfc/rfc9001.html#name-confidentiality-limit>.
    #[inline]
    pub fn confidentiality_limit(&self) -> u64 {
        self.suite.confidentiality_limit
    }

    /// Number of times the packet key can be used without sacrificing integrity
    ///
    /// See <https://www.rfc-editor.org/rfc/rfc9001.html#name-integrity-limit>.
    #[inline]
    pub fn integrity_limit(&self) -> u64 {
        self.suite.integrity_limit
    }

    /// Tag length for the underlying AEAD algorithm
    #[inline]
    pub fn tag_len(&self) -> usize {
        self.key.algorithm().tag_len()
    }
}

/// AEAD tag, must be appended to encrypted cipher text
pub struct Tag(aead::Tag);

impl AsRef<[u8]> for Tag {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        self.0.as_ref()
    }
}

/// Packet protection keys for bidirectional 1-RTT communication
pub struct PacketKeySet {
    /// Encrypts outgoing packets
    pub local: PacketKey,
    /// Decrypts incoming packets
    pub remote: PacketKey,
}

impl PacketKeySet {
    fn new(secrets: &Secrets) -> Self {
        let (local, remote) = secrets.local_remote();
        Self {
            local: PacketKey::new(secrets.suite, local),
            remote: PacketKey::new(secrets.suite, remote),
        }
    }
}

/// Complete set of keys used to communicate with the peer
pub struct Keys {
    /// Encrypts outgoing packets
    pub local: DirectionalKeys,
    /// Decrypts incoming packets
    pub remote: DirectionalKeys,
}

impl Keys {
    /// Construct keys for use with initial packets
    pub fn initial(version: Version, client_dst_connection_id: &[u8], is_client: bool) -> Self {
        const CLIENT_LABEL: &[u8] = b"client in";
        const SERVER_LABEL: &[u8] = b"server in";
        let salt = version.initial_salt();
        let hs_secret = hkdf::Salt::new(hkdf::HKDF_SHA256, salt).extract(client_dst_connection_id);

        let secrets = Secrets {
            client: hkdf_expand(&hs_secret, hkdf::HKDF_SHA256, CLIENT_LABEL, &[]),
            server: hkdf_expand(&hs_secret, hkdf::HKDF_SHA256, SERVER_LABEL, &[]),
            suite: TLS13_AES_128_GCM_SHA256_INTERNAL,
            is_client,
        };
        Self::new(&secrets)
    }

    fn new(secrets: &Secrets) -> Self {
        let (local, remote) = secrets.local_remote();
        Self {
            local: DirectionalKeys::new(secrets.suite, local),
            remote: DirectionalKeys::new(secrets.suite, remote),
        }
    }
}

/// Key material for use in QUIC packet spaces
///
/// QUIC uses 4 different sets of keys (and progressive key updates for long-running connections):
///
/// * Initial: these can be created from [`Keys::initial()`]
/// * 0-RTT keys: can be retrieved from [`QuicExt::zero_rtt_keys()`]
/// * Handshake: these are returned from [`QuicExt::write_hs()`] after `ClientHello` and
///   `ServerHello` messages have been exchanged
/// * 1-RTT keys: these are returned from [`QuicExt::write_hs()`] after the handshake is done
///
/// Once the 1-RTT keys have been exchanged, either side may initiate a key update. Progressive
/// update keys can be obtained from the [`Secrets`] returned in [`KeyChange::OneRtt`]. Note that
/// only packet keys are updated by key updates; header protection keys remain the same.
#[allow(clippy::large_enum_variant)]
pub enum KeyChange {
    /// Keys for the handshake space
    Handshake {
        /// Header and packet keys for the handshake space
        keys: Keys,
    },
    /// Keys for 1-RTT data
    OneRtt {
        /// Header and packet keys for 1-RTT data
        keys: Keys,
        /// Secrets to derive updated keys from
        next: Secrets,
    },
}

/// Compute the nonce to use for encrypting or decrypting `packet_number`
fn nonce_for(packet_number: u64, iv: &Iv) -> ring::aead::Nonce {
    let mut out = [0; aead::NONCE_LEN];
    out[4..].copy_from_slice(&packet_number.to_be_bytes());
    for (out, inp) in out.iter_mut().zip(iv.0.iter()) {
        *out ^= inp;
    }
    aead::Nonce::assume_unique_for_key(out)
}

/// QUIC protocol version
///
/// Governs version-specific behavior in the TLS layer
#[non_exhaustive]
#[derive(Clone, Copy)]
pub enum Version {
    /// Draft versions 29, 30, 31 and 32
    V1Draft,
    /// First stable RFC
    V1,
}

impl Version {
    fn initial_salt(self) -> &'static [u8; 20] {
        match self {
            Self::V1Draft => &[
                // https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-32#section-5.2
                0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c, 0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61,
                0x11, 0xe0, 0x43, 0x90, 0xa8, 0x99,
            ],
            Self::V1 => &[
                // https://www.rfc-editor.org/rfc/rfc9001.html#name-initial-secrets
                0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3, 0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8,
                0x0c, 0xad, 0xcc, 0xbb, 0x7f, 0x0a,
            ],
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn short_packet_header_protection() {
        // https://www.rfc-editor.org/rfc/rfc9001.html#name-chacha20-poly1305-short-hea

        const PN: u64 = 654360564;
        const SECRET: &[u8] = &[
            0x9a, 0xc3, 0x12, 0xa7, 0xf8, 0x77, 0x46, 0x8e, 0xbe, 0x69, 0x42, 0x27, 0x48, 0xad,
            0x00, 0xa1, 0x54, 0x43, 0xf1, 0x82, 0x03, 0xa0, 0x7d, 0x60, 0x60, 0xf6, 0x88, 0xf3,
            0x0f, 0x21, 0x63, 0x2b,
        ];

        let secret = hkdf::Prk::new_less_safe(hkdf::HKDF_SHA256, SECRET);
        use crate::tls::rustls::tls13::TLS13_CHACHA20_POLY1305_SHA256_INTERNAL;
        let hpk = HeaderProtectionKey::new(TLS13_CHACHA20_POLY1305_SHA256_INTERNAL, &secret);
        let packet = PacketKey::new(TLS13_CHACHA20_POLY1305_SHA256_INTERNAL, &secret);

        const PLAIN: &[u8] = &[0x42, 0x00, 0xbf, 0xf4, 0x01];

        let mut buf = PLAIN.to_vec();
        let (header, payload) = buf.split_at_mut(4);
        let tag = packet.encrypt_in_place(PN, &*header, payload).unwrap();
        buf.extend(tag.as_ref());

        let pn_offset = 1;
        let (header, sample) = buf.split_at_mut(pn_offset + 4);
        let (first, rest) = header.split_at_mut(1);
        let sample = &sample[..hpk.sample_len()];
        hpk.encrypt_in_place(sample, &mut first[0], dbg!(rest))
            .unwrap();

        const PROTECTED: &[u8] = &[
            0x4c, 0xfe, 0x41, 0x89, 0x65, 0x5e, 0x5c, 0xd5, 0x5c, 0x41, 0xf6, 0x90, 0x80, 0x57,
            0x5d, 0x79, 0x99, 0xc2, 0x5a, 0x5b, 0xfb,
        ];

        assert_eq!(&buf, PROTECTED);

        let (header, sample) = buf.split_at_mut(pn_offset + 4);
        let (first, rest) = header.split_at_mut(1);
        let sample = &sample[..hpk.sample_len()];
        hpk.decrypt_in_place(sample, &mut first[0], rest).unwrap();

        let (header, payload_tag) = buf.split_at_mut(4);
        let plain = packet.decrypt_in_place(PN, &*header, payload_tag).unwrap();

        assert_eq!(plain, &PLAIN[4..]);
    }

    #[test]
    fn key_update_test_vector() {
        fn equal_prk(x: &hkdf::Prk, y: &hkdf::Prk) -> bool {
            let mut x_data = [0; 16];
            let mut y_data = [0; 16];
            let x_okm = x.expand(&[b"info"], &aead::quic::AES_128).unwrap();
            x_okm.fill(&mut x_data[..]).unwrap();
            let y_okm = y.expand(&[b"info"], &aead::quic::AES_128).unwrap();
            y_okm.fill(&mut y_data[..]).unwrap();
            x_data == y_data
        }

        let mut secrets = Secrets {
            // Constant dummy values for reproducibility
            client: hkdf::Prk::new_less_safe(
                hkdf::HKDF_SHA256,
                &[
                    0xb8, 0x76, 0x77, 0x08, 0xf8, 0x77, 0x23, 0x58, 0xa6, 0xea, 0x9f, 0xc4, 0x3e,
                    0x4a, 0xdd, 0x2c, 0x96, 0x1b, 0x3f, 0x52, 0x87, 0xa6, 0xd1, 0x46, 0x7e, 0xe0,
                    0xae, 0xab, 0x33, 0x72, 0x4d, 0xbf,
                ],
            ),
            server: hkdf::Prk::new_less_safe(
                hkdf::HKDF_SHA256,
                &[
                    0x42, 0xdc, 0x97, 0x21, 0x40, 0xe0, 0xf2, 0xe3, 0x98, 0x45, 0xb7, 0x67, 0x61,
                    0x34, 0x39, 0xdc, 0x67, 0x58, 0xca, 0x43, 0x25, 0x9b, 0x87, 0x85, 0x06, 0x82,
                    0x4e, 0xb1, 0xe4, 0x38, 0xd8, 0x55,
                ],
            ),
            suite: TLS13_AES_128_GCM_SHA256_INTERNAL,
            is_client: true,
        };
        secrets.update();

        assert!(equal_prk(
            &secrets.client,
            &hkdf::Prk::new_less_safe(
                hkdf::HKDF_SHA256,
                &[
                    0x42, 0xca, 0xc8, 0xc9, 0x1c, 0xd5, 0xeb, 0x40, 0x68, 0x2e, 0x43, 0x2e, 0xdf,
                    0x2d, 0x2b, 0xe9, 0xf4, 0x1a, 0x52, 0xca, 0x6b, 0x22, 0xd8, 0xe6, 0xcd, 0xb1,
                    0xe8, 0xac, 0xa9, 0x6, 0x1f, 0xce
                ]
            )
        ));
        assert!(equal_prk(
            &secrets.server,
            &hkdf::Prk::new_less_safe(
                hkdf::HKDF_SHA256,
                &[
                    0xeb, 0x7f, 0x5e, 0x2a, 0x12, 0x3f, 0x40, 0x7d, 0xb4, 0x99, 0xe3, 0x61, 0xca,
                    0xe5, 0x90, 0xd4, 0xd9, 0x92, 0xe1, 0x4b, 0x7a, 0xce, 0x3, 0xc2, 0x44, 0xe0,
                    0x42, 0x21, 0x15, 0xb6, 0xd3, 0x8a
                ]
            )
        ));
    }
}