1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
use std::sync::{Arc, Mutex, MutexGuard};
use std::{mem, time};
use ring::aead;
use crate::tls::rustls::error::Error;
use crate::tls::rustls::rand;
use crate::tls::rustls::server::server_conn::ProducesTickets;
/// The timebase for expiring and rolling tickets and ticketing
/// keys. This is UNIX wall time in seconds.
///
/// This is guaranteed to be on or after the UNIX epoch.
#[derive(Clone, Copy, Debug)]
pub struct TimeBase(time::Duration);
impl TimeBase {
#[inline]
pub fn now() -> Result<Self, time::SystemTimeError> {
Ok(Self(
time::SystemTime::now().duration_since(time::UNIX_EPOCH)?,
))
}
#[inline]
pub fn as_secs(&self) -> u64 {
self.0.as_secs()
}
}
/// This is a `ProducesTickets` implementation which uses
/// any *ring* `aead::Algorithm` to encrypt and authentication
/// the ticket payload. It does not enforce any lifetime
/// constraint.
struct AeadTicketer {
alg: &'static aead::Algorithm,
key: aead::LessSafeKey,
lifetime: u32,
}
impl AeadTicketer {
/// Make a ticketer with recommended configuration and a random key.
fn new() -> Result<Self, rand::GetRandomFailed> {
let mut key = [0u8; 32];
rand::fill_random(&mut key)?;
let alg = &aead::CHACHA20_POLY1305;
let key = aead::UnboundKey::new(alg, &key).unwrap();
Ok(Self {
alg,
key: aead::LessSafeKey::new(key),
lifetime: 60 * 60 * 12,
})
}
}
impl ProducesTickets for AeadTicketer {
fn enabled(&self) -> bool {
true
}
fn lifetime(&self) -> u32 {
self.lifetime
}
/// Encrypt `message` and return the ciphertext.
fn encrypt(&self, message: &[u8]) -> Option<Vec<u8>> {
// Random nonce, because a counter is a privacy leak.
let mut nonce_buf = [0u8; 12];
rand::fill_random(&mut nonce_buf).ok()?;
let nonce = ring::aead::Nonce::assume_unique_for_key(nonce_buf);
let aad = ring::aead::Aad::empty();
let mut ciphertext =
Vec::with_capacity(nonce_buf.len() + message.len() + self.key.algorithm().tag_len());
ciphertext.extend(&nonce_buf);
ciphertext.extend(message);
self.key
.seal_in_place_separate_tag(nonce, aad, &mut ciphertext[nonce_buf.len()..])
.map(|tag| {
ciphertext.extend(tag.as_ref());
ciphertext
})
.ok()
}
/// Decrypt `ciphertext` and recover the original message.
fn decrypt(&self, ciphertext: &[u8]) -> Option<Vec<u8>> {
// Non-panicking `let (nonce, ciphertext) = ciphertext.split_at(...)`.
let nonce = ciphertext.get(..self.alg.nonce_len())?;
let ciphertext = ciphertext.get(nonce.len()..)?;
// This won't fail since `nonce` has the required length.
let nonce = ring::aead::Nonce::try_assume_unique_for_key(nonce).ok()?;
let mut out = Vec::from(ciphertext);
let plain_len = self
.key
.open_in_place(nonce, aead::Aad::empty(), &mut out)
.ok()?
.len();
out.truncate(plain_len);
Some(out)
}
}
struct TicketSwitcherState {
next: Option<Box<dyn ProducesTickets>>,
current: Box<dyn ProducesTickets>,
previous: Option<Box<dyn ProducesTickets>>,
next_switch_time: u64,
}
/// A ticketer that has a 'current' sub-ticketer and a single
/// 'previous' ticketer. It creates a new ticketer every so
/// often, demoting the current ticketer.
struct TicketSwitcher {
generator: fn() -> Result<Box<dyn ProducesTickets>, rand::GetRandomFailed>,
lifetime: u32,
state: Mutex<TicketSwitcherState>,
}
impl TicketSwitcher {
/// `lifetime` is in seconds, and is how long the current ticketer
/// is used to generate new tickets. Tickets are accepted for no
/// longer than twice this duration. `generator` produces a new
/// `ProducesTickets` implementation.
fn new(
lifetime: u32,
generator: fn() -> Result<Box<dyn ProducesTickets>, rand::GetRandomFailed>,
) -> Result<Self, Error> {
let now = TimeBase::now()?;
Ok(Self {
generator,
lifetime,
state: Mutex::new(TicketSwitcherState {
next: Some(generator()?),
current: generator()?,
previous: None,
next_switch_time: now.as_secs() + u64::from(lifetime),
}),
})
}
/// If it's time, demote the `current` ticketer to `previous` (so it
/// does no new encryptions but can do decryption) and use next for a
/// new `current` ticketer.
///
/// Calling this regularly will ensure timely key erasure. Otherwise,
/// key erasure will be delayed until the next encrypt/decrypt call.
///
/// For efficiency, this is also responsible for locking the state mutex
/// and returning the mutexguard.
fn maybe_roll(&self, now: TimeBase) -> Option<MutexGuard<TicketSwitcherState>> {
// The code below aims to make switching as efficient as possible
// in the common case that the generator never fails. To achieve this
// we run the following steps:
// 1. If no switch is necessary, just return the mutexguard
// 2. Shift over all of the ticketers (so current becomes previous, and next becomes
// current). After this, other threads can start using the new current ticketer.
// 3. unlock mutex and generate new ticketer.
// 4. Place new ticketer in next and return current
//
// There are a few things to note here. First, we don't check whether
// a new switch might be needed in step 4, even though, due to locking
// and entropy collection, significant amounts of time may have passed.
// This is to guarantee that the thread doing the switch will eventually
// make progress.
//
// Second, because next may be None, step 2 can fail. In that case
// we enter a recovery mode where we generate 2 new ticketers, one for
// next and one for the current ticketer. We then take the mutex a
// second time and redo the time check to see if a switch is still
// necessary.
//
// This somewhat convoluted approach ensures good availability of the
// mutex, by ensuring that the state is usable and the mutex not held
// during generation. It also ensures that, so long as the inner
// ticketer never generates panics during encryption/decryption,
// we are guaranteed to never panic when holding the mutex.
let now = now.as_secs();
let mut are_recovering = false; // Are we recovering from previous failure?
{
// Scope the mutex so we only take it for as long as needed
let mut state = self.state.lock().ok()?;
// Fast path in case we do not need to switch to the next ticketer yet
if now <= state.next_switch_time {
return Some(state);
}
// Make the switch, or mark for recovery if not possible
if let Some(next) = state.next.take() {
state.previous = Some(mem::replace(&mut state.current, next));
state.next_switch_time = now + u64::from(self.lifetime);
} else {
are_recovering = true;
}
}
// We always need a next, so generate it now
let next = (self.generator)().ok()?;
if !are_recovering {
// Normal path, generate new next and place it in the state
let mut state = self.state.lock().ok()?;
state.next = Some(next);
Some(state)
} else {
// Recovering, generate also a new current ticketer, and modify state
// as needed. (we need to redo the time check, otherwise this might
// result in very rapid switching of ticketers)
let new_current = (self.generator)().ok()?;
let mut state = self.state.lock().ok()?;
state.next = Some(next);
if now > state.next_switch_time {
state.previous = Some(mem::replace(&mut state.current, new_current));
state.next_switch_time = now + u64::from(self.lifetime);
}
Some(state)
}
}
}
impl ProducesTickets for TicketSwitcher {
fn lifetime(&self) -> u32 {
self.lifetime * 2
}
fn enabled(&self) -> bool {
true
}
fn encrypt(&self, message: &[u8]) -> Option<Vec<u8>> {
let state = self.maybe_roll(TimeBase::now().ok()?)?;
state.current.encrypt(message)
}
fn decrypt(&self, ciphertext: &[u8]) -> Option<Vec<u8>> {
let state = self.maybe_roll(TimeBase::now().ok()?)?;
// Decrypt with the current key; if that fails, try with the previous.
state.current.decrypt(ciphertext).or_else(|| {
state
.previous
.as_ref()
.and_then(|previous| previous.decrypt(ciphertext))
})
}
}
/// A concrete, safe ticket creation mechanism.
pub struct Ticketer {}
fn generate_inner() -> Result<Box<dyn ProducesTickets>, rand::GetRandomFailed> {
Ok(Box::new(AeadTicketer::new()?))
}
impl Ticketer {
/// Make the recommended Ticketer. This produces tickets
/// with a 12 hour life and randomly generated keys.
///
/// The encryption mechanism used in Chacha20Poly1305.
pub fn new() -> Result<Arc<dyn ProducesTickets>, Error> {
Ok(Arc::new(TicketSwitcher::new(6 * 60 * 60, generate_inner)?))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test_log::test]
fn basic_pairwise_test() {
let t = Ticketer::new().unwrap();
assert!(t.enabled());
let cipher = t.encrypt(b"hello world").unwrap();
let plain = t.decrypt(&cipher).unwrap();
assert_eq!(plain, b"hello world");
}
#[test_log::test]
fn ticketswitcher_switching_test() {
let t = Arc::new(TicketSwitcher::new(1, generate_inner).unwrap());
let now = TimeBase::now().unwrap();
let cipher1 = t.encrypt(b"ticket 1").unwrap();
assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
{
// Trigger new ticketer
t.maybe_roll(TimeBase(now.0 + std::time::Duration::from_secs(10)));
}
let cipher2 = t.encrypt(b"ticket 2").unwrap();
assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
{
// Trigger new ticketer
t.maybe_roll(TimeBase(now.0 + std::time::Duration::from_secs(20)));
}
let cipher3 = t.encrypt(b"ticket 3").unwrap();
assert!(t.decrypt(&cipher1).is_none());
assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
assert_eq!(t.decrypt(&cipher3).unwrap(), b"ticket 3");
}
fn fail_generator() -> Result<Box<dyn ProducesTickets>, rand::GetRandomFailed> {
Err(rand::GetRandomFailed)
}
#[test_log::test]
fn ticketswitcher_recover_test() {
let mut t = TicketSwitcher::new(1, generate_inner).unwrap();
let now = TimeBase::now().unwrap();
let cipher1 = t.encrypt(b"ticket 1").unwrap();
assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
t.generator = fail_generator;
{
// Failed new ticketer
t.maybe_roll(TimeBase(now.0 + std::time::Duration::from_secs(10)));
}
t.generator = generate_inner;
let cipher2 = t.encrypt(b"ticket 2").unwrap();
assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
{
// recover
t.maybe_roll(TimeBase(now.0 + std::time::Duration::from_secs(20)));
}
let cipher3 = t.encrypt(b"ticket 3").unwrap();
assert!(t.decrypt(&cipher1).is_none());
assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
assert_eq!(t.decrypt(&cipher3).unwrap(), b"ticket 3");
}
}