1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
#![allow(dead_code)]

/// Key schedule maintenance for TLS1.3
use ring::{
    aead,
    digest::{self, Digest},
    hkdf::{self, KeyType as _},
    hmac,
};

use crate::tls::rustls::cipher::{Iv, IvLen};
use crate::tls::rustls::error::Error;
use crate::tls::rustls::key_log::KeyLog;
use crate::tls::rustls::msgs::base::PayloadU8;

/// The kinds of secret we can extract from `KeySchedule`.
#[derive(Debug, Clone, Copy, PartialEq)]
enum SecretKind {
    ResumptionPskBinderKey,
    ClientEarlyTrafficSecret,
    ClientHandshakeTrafficSecret,
    ServerHandshakeTrafficSecret,
    ClientApplicationTrafficSecret,
    ServerApplicationTrafficSecret,
    ExporterMasterSecret,
    ResumptionMasterSecret,
    DerivedSecret,
}

impl SecretKind {
    fn to_bytes(self) -> &'static [u8] {
        use self::SecretKind::*;
        match self {
            ResumptionPskBinderKey => b"res binder",
            ClientEarlyTrafficSecret => b"c e traffic",
            ClientHandshakeTrafficSecret => b"c hs traffic",
            ServerHandshakeTrafficSecret => b"s hs traffic",
            ClientApplicationTrafficSecret => b"c ap traffic",
            ServerApplicationTrafficSecret => b"s ap traffic",
            ExporterMasterSecret => b"exp master",
            ResumptionMasterSecret => b"res master",
            DerivedSecret => b"derived",
        }
    }

    fn log_label(self) -> Option<&'static str> {
        use self::SecretKind::*;
        Some(match self {
            ClientEarlyTrafficSecret => "CLIENT_EARLY_TRAFFIC_SECRET",
            ClientHandshakeTrafficSecret => "CLIENT_HANDSHAKE_TRAFFIC_SECRET",
            ServerHandshakeTrafficSecret => "SERVER_HANDSHAKE_TRAFFIC_SECRET",
            ClientApplicationTrafficSecret => "CLIENT_TRAFFIC_SECRET_0",
            ServerApplicationTrafficSecret => "SERVER_TRAFFIC_SECRET_0",
            ExporterMasterSecret => "EXPORTER_SECRET",
            _ => {
                return None;
            }
        })
    }
}

/// This is the TLS1.3 key schedule.  It stores the current secret and
/// the type of hash.  This isn't used directly; but only through the
/// typestates.
pub struct KeySchedule {
    current: hkdf::Prk,
    algorithm: ring::hkdf::Algorithm,
}

// We express the state of a contained KeySchedule using these
// typestates.  This means we can write code that cannot accidentally
// (e.g.) encrypt application data using a KeySchedule solely constructed
// with an empty or trivial secret, or extract the wrong kind of secrets
// at a given point.

/// KeySchedule for early data stage.
pub struct KeyScheduleEarly {
    ks: KeySchedule,
}

impl KeyScheduleEarly {
    pub fn new(algorithm: hkdf::Algorithm, secret: &[u8]) -> Self {
        Self {
            ks: KeySchedule::new(algorithm, secret),
        }
    }

    pub fn client_early_traffic_secret(
        &self,
        hs_hash: &Digest,
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
    ) -> hkdf::Prk {
        self.ks.derive_logged_secret(
            SecretKind::ClientEarlyTrafficSecret,
            hs_hash.as_ref(),
            key_log,
            client_random,
        )
    }

    pub fn resumption_psk_binder_key_and_sign_verify_data(&self, hs_hash: &Digest) -> hmac::Tag {
        let resumption_psk_binder_key = self
            .ks
            .derive_for_empty_hash(SecretKind::ResumptionPskBinderKey);
        self.ks
            .sign_verify_data_raw(&resumption_psk_binder_key, hs_hash.as_ref())
    }
}

/// Pre-handshake key schedule
///
/// The inner `KeySchedule` is either constructed without any secrets based on ths HKDF algorithm
/// or is extracted from a `KeyScheduleEarly`. This can then be used to derive the
/// `KeyScheduleHandshakeStart`.
pub struct KeySchedulePreHandshake {
    ks: KeySchedule,
}

impl KeySchedulePreHandshake {
    pub fn new(algorithm: hkdf::Algorithm) -> Self {
        Self {
            ks: KeySchedule::new_with_empty_secret(algorithm),
        }
    }

    pub fn into_handshake(mut self, secret: &[u8]) -> KeyScheduleHandshakeStart {
        self.ks.input_secret(secret);
        KeyScheduleHandshakeStart { ks: self.ks }
    }
}

impl From<KeyScheduleEarly> for KeySchedulePreHandshake {
    fn from(KeyScheduleEarly { ks }: KeyScheduleEarly) -> Self {
        Self { ks }
    }
}

/// KeySchedule during handshake.
pub struct KeyScheduleHandshakeStart {
    ks: KeySchedule,
}

impl KeyScheduleHandshakeStart {
    pub fn derive_handshake_secrets(
        self,
        hs_hash: &[u8],
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
    ) -> (KeyScheduleHandshake, hkdf::Prk, hkdf::Prk) {
        // Use an empty handshake hash for the initial handshake.
        let client_secret = self.ks.derive_logged_secret(
            SecretKind::ClientHandshakeTrafficSecret,
            hs_hash,
            key_log,
            client_random,
        );

        let server_secret = self.ks.derive_logged_secret(
            SecretKind::ServerHandshakeTrafficSecret,
            hs_hash,
            key_log,
            client_random,
        );

        let new = KeyScheduleHandshake {
            ks: self.ks,
            client_handshake_traffic_secret: client_secret.clone(),
            server_handshake_traffic_secret: server_secret.clone(),
        };

        (new, client_secret, server_secret)
    }
}

pub struct KeyScheduleHandshake {
    ks: KeySchedule,
    client_handshake_traffic_secret: hkdf::Prk,
    server_handshake_traffic_secret: hkdf::Prk,
}

impl KeyScheduleHandshake {
    pub fn sign_server_finish(&self, hs_hash: &Digest) -> hmac::Tag {
        self.sign_server_finish_raw(hs_hash.as_ref())
    }

    pub fn sign_server_finish_raw(&self, hs_hash: &[u8]) -> hmac::Tag {
        self.ks
            .sign_finish_raw(&self.server_handshake_traffic_secret, hs_hash)
    }

    pub fn client_key(&self) -> &hkdf::Prk {
        &self.client_handshake_traffic_secret
    }

    pub fn into_traffic_with_client_finished_pending(
        self,
        hs_hash: Digest,
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
    ) -> (
        KeyScheduleTrafficWithClientFinishedPending,
        hkdf::Prk,
        hkdf::Prk,
    ) {
        self.into_traffic_with_client_finished_pending_raw(hs_hash.as_ref(), key_log, client_random)
    }

    pub fn into_traffic_with_client_finished_pending_raw(
        self,
        hs_hash: &[u8],
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
    ) -> (
        KeyScheduleTrafficWithClientFinishedPending,
        hkdf::Prk,
        hkdf::Prk,
    ) {
        let traffic = KeyScheduleTraffic::new(self.ks, hs_hash, key_log, client_random);

        let client_secret = traffic.current_client_traffic_secret.clone();
        let server_secret = traffic.current_server_traffic_secret.clone();

        let new = KeyScheduleTrafficWithClientFinishedPending {
            handshake_client_traffic_secret: self.client_handshake_traffic_secret,
            traffic,
        };

        (new, client_secret, server_secret)
    }
}

/// KeySchedule during traffic stage.
///
/// Note: Retains the ability to calculate the client's finished verify_data. The traffic stage key
/// schedule can be extracted from it through signing the client finished hash.
pub struct KeyScheduleTrafficWithClientFinishedPending {
    handshake_client_traffic_secret: hkdf::Prk,
    traffic: KeyScheduleTraffic,
}

impl KeyScheduleTrafficWithClientFinishedPending {
    pub fn client_key(&self) -> &hkdf::Prk {
        &self.handshake_client_traffic_secret
    }

    pub fn sign_client_finish(
        self,
        hs_hash: &Digest,
    ) -> (KeyScheduleTraffic, hmac::Tag, hkdf::Prk) {
        self.sign_client_finish_raw(hs_hash.as_ref())
    }

    pub fn sign_client_finish_raw(
        self,
        hs_hash: &[u8],
    ) -> (KeyScheduleTraffic, hmac::Tag, hkdf::Prk) {
        let tag = self
            .traffic
            .ks
            .sign_finish_raw(&self.handshake_client_traffic_secret, hs_hash);

        let client_secret = self.traffic.current_client_traffic_secret.clone();

        (self.traffic, tag, client_secret)
    }
}

/// KeySchedule during traffic stage.  All traffic & exporter keys are guaranteed
/// to be available.
pub struct KeyScheduleTraffic {
    ks: KeySchedule,
    current_client_traffic_secret: hkdf::Prk,
    current_server_traffic_secret: hkdf::Prk,
    current_exporter_secret: hkdf::Prk,
}

impl KeyScheduleTraffic {
    fn new(
        mut ks: KeySchedule,
        hs_hash: &[u8],
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
    ) -> Self {
        ks.input_empty();

        let current_client_traffic_secret = ks.derive_logged_secret(
            SecretKind::ClientApplicationTrafficSecret,
            hs_hash,
            key_log,
            client_random,
        );

        let current_server_traffic_secret = ks.derive_logged_secret(
            SecretKind::ServerApplicationTrafficSecret,
            hs_hash,
            key_log,
            client_random,
        );

        let current_exporter_secret = ks.derive_logged_secret(
            SecretKind::ExporterMasterSecret,
            hs_hash,
            key_log,
            client_random,
        );

        Self {
            ks,
            current_client_traffic_secret,
            current_server_traffic_secret,
            current_exporter_secret,
        }
    }

    pub fn next_server_application_traffic_secret(&mut self) -> hkdf::Prk {
        let secret = self.ks.derive_next(&self.current_server_traffic_secret);
        self.current_server_traffic_secret = secret.clone();
        secret
    }

    pub fn next_client_application_traffic_secret(&mut self) -> hkdf::Prk {
        let secret = self.ks.derive_next(&self.current_client_traffic_secret);
        self.current_client_traffic_secret = secret.clone();
        secret
    }

    pub fn resumption_master_secret_and_derive_ticket_psk(
        &self,
        hs_hash: &Digest,
        nonce: &[u8],
    ) -> Vec<u8> {
        self.resumption_master_secret_and_derive_ticket_psk_raw(hs_hash.as_ref(), nonce)
    }

    pub fn resumption_master_secret_and_derive_ticket_psk_raw(
        &self,
        hs_hash: &[u8],
        nonce: &[u8],
    ) -> Vec<u8> {
        let resumption_master_secret = self.ks.derive(
            self.ks.algorithm(),
            SecretKind::ResumptionMasterSecret,
            hs_hash,
        );
        self.ks.derive_ticket_psk(&resumption_master_secret, nonce)
    }

    pub fn export_keying_material(
        &self,
        out: &mut [u8],
        label: &[u8],
        context: Option<&[u8]>,
    ) -> Result<(), Error> {
        self.ks
            .export_keying_material(&self.current_exporter_secret, out, label, context)
    }
}

impl KeySchedule {
    fn new(algorithm: hkdf::Algorithm, secret: &[u8]) -> Self {
        let zeroes = [0u8; digest::MAX_OUTPUT_LEN];
        let salt = hkdf::Salt::new(algorithm, &zeroes[..algorithm.len()]);
        Self {
            current: salt.extract(secret),
            algorithm,
        }
    }

    #[inline]
    fn algorithm(&self) -> hkdf::Algorithm {
        self.algorithm
    }

    fn new_with_empty_secret(algorithm: hkdf::Algorithm) -> Self {
        let zeroes = [0u8; digest::MAX_OUTPUT_LEN];
        Self::new(algorithm, &zeroes[..algorithm.len()])
    }

    /// Input the empty secret.
    fn input_empty(&mut self) {
        let zeroes = [0u8; digest::MAX_OUTPUT_LEN];
        self.input_secret(&zeroes[..self.algorithm.len()]);
    }

    /// Input the given secret.
    fn input_secret(&mut self, secret: &[u8]) {
        let salt: hkdf::Salt = self.derive_for_empty_hash(SecretKind::DerivedSecret);
        self.current = salt.extract(secret);
    }

    /// Derive a secret of given `kind`, using current handshake hash `hs_hash`.
    fn derive<T, L>(&self, key_type: L, kind: SecretKind, hs_hash: &[u8]) -> T
    where
        T: for<'a> From<hkdf::Okm<'a, L>>,
        L: hkdf::KeyType,
    {
        hkdf_expand(&self.current, key_type, kind.to_bytes(), hs_hash)
    }

    fn derive_logged_secret(
        &self,
        kind: SecretKind,
        hs_hash: &[u8],
        key_log: &dyn KeyLog,
        client_random: &[u8; 32],
    ) -> hkdf::Prk {
        let log_label = kind.log_label().expect("not a loggable secret");
        if key_log.will_log(log_label) {
            let secret = self
                .derive::<PayloadU8, _>(PayloadU8Len(self.algorithm.len()), kind, hs_hash)
                .into_inner();
            key_log.log(log_label, client_random, &secret);
        }
        self.derive(self.algorithm, kind, hs_hash)
    }

    /// Derive a secret of given `kind` using the hash of the empty string
    /// for the handshake hash.  Useful only for
    /// `SecretKind::ResumptionPSKBinderKey` and
    /// `SecretKind::DerivedSecret`.
    fn derive_for_empty_hash<T>(&self, kind: SecretKind) -> T
    where
        T: for<'a> From<hkdf::Okm<'a, hkdf::Algorithm>>,
    {
        let digest_alg = self.algorithm.hmac_algorithm().digest_algorithm();
        let empty_hash = digest::digest(digest_alg, &[]);
        self.derive(self.algorithm, kind, empty_hash.as_ref())
    }

    /// Sign the finished message consisting of `hs_hash` using a current
    /// traffic secret.
    fn sign_finish(&self, base_key: &hkdf::Prk, hs_hash: &Digest) -> hmac::Tag {
        self.sign_finish_raw(base_key, hs_hash.as_ref())
    }

    fn sign_finish_raw(&self, base_key: &hkdf::Prk, hs_hash: &[u8]) -> hmac::Tag {
        self.sign_verify_data_raw(base_key, hs_hash)
    }

    /// Sign the finished message consisting of `hs_hash` using the key material
    /// `base_key`.
    fn sign_verify_data(&self, base_key: &hkdf::Prk, hs_hash: &Digest) -> hmac::Tag {
        self.sign_verify_data_raw(base_key, hs_hash.as_ref())
    }

    fn sign_verify_data_raw(&self, base_key: &hkdf::Prk, hs_hash: &[u8]) -> hmac::Tag {
        let hmac_alg = self.algorithm.hmac_algorithm();
        let hmac_key = hkdf_expand(base_key, hmac_alg, b"finished", &[]);
        hmac::sign(&hmac_key, hs_hash)
    }

    /// Derive the next application traffic secret, returning it.
    fn derive_next(&self, base_key: &hkdf::Prk) -> hkdf::Prk {
        hkdf_expand(base_key, self.algorithm, b"traffic upd", &[])
    }

    /// Derive the PSK to use given a resumption_master_secret and
    /// ticket_nonce.
    fn derive_ticket_psk(&self, rms: &hkdf::Prk, nonce: &[u8]) -> Vec<u8> {
        let payload: PayloadU8 = hkdf_expand(
            rms,
            PayloadU8Len(self.algorithm.len()),
            b"resumption",
            nonce,
        );
        payload.into_inner()
    }

    fn export_keying_material(
        &self,
        current_exporter_secret: &hkdf::Prk,
        out: &mut [u8],
        label: &[u8],
        context: Option<&[u8]>,
    ) -> Result<(), Error> {
        let digest_alg = self.algorithm.hmac_algorithm().digest_algorithm();

        let h_empty = digest::digest(digest_alg, &[]);
        let secret: hkdf::Prk = hkdf_expand(
            current_exporter_secret,
            self.algorithm,
            label,
            h_empty.as_ref(),
        );

        let h_context = digest::digest(digest_alg, context.unwrap_or(&[]));

        // TODO: Test what happens when this fails
        hkdf_expand_info(
            &secret,
            PayloadU8Len(out.len()),
            b"exporter",
            h_context.as_ref(),
            |okm| okm.fill(out),
        )
        .map_err(|_| Error::General("exporting too much".to_string()))
    }
}

pub fn hkdf_expand<T, L>(secret: &hkdf::Prk, key_type: L, label: &[u8], context: &[u8]) -> T
where
    T: for<'a> From<hkdf::Okm<'a, L>>,
    L: hkdf::KeyType,
{
    hkdf_expand_info(secret, key_type, label, context, |okm| okm.into())
}

fn hkdf_expand_info<F, T, L>(
    secret: &hkdf::Prk,
    key_type: L,
    label: &[u8],
    context: &[u8],
    f: F,
) -> T
where
    F: for<'b> FnOnce(hkdf::Okm<'b, L>) -> T,
    L: hkdf::KeyType,
{
    const LABEL_PREFIX: &[u8] = b"tls13 ";

    let output_len = u16::to_be_bytes(key_type.len() as u16);
    let label_len = u8::to_be_bytes((LABEL_PREFIX.len() + label.len()) as u8);
    let context_len = u8::to_be_bytes(context.len() as u8);

    let info = &[
        &output_len[..],
        &label_len[..],
        LABEL_PREFIX,
        label,
        &context_len[..],
        context,
    ];
    let okm = secret.expand(info, key_type).unwrap();

    f(okm)
}

pub struct PayloadU8Len(pub usize);
impl hkdf::KeyType for PayloadU8Len {
    fn len(&self) -> usize {
        self.0
    }
}

impl From<hkdf::Okm<'_, PayloadU8Len>> for PayloadU8 {
    fn from(okm: hkdf::Okm<PayloadU8Len>) -> Self {
        let mut r = vec![0u8; okm.len().0];
        okm.fill(&mut r[..]).unwrap();
        Self::new(r)
    }
}

pub fn derive_traffic_key(
    secret: &hkdf::Prk,
    aead_algorithm: &'static aead::Algorithm,
) -> aead::UnboundKey {
    hkdf_expand(secret, aead_algorithm, b"key", &[])
}

pub fn derive_traffic_iv(secret: &hkdf::Prk) -> Iv {
    hkdf_expand(secret, IvLen, b"iv", &[])
}

#[cfg(test)]
mod tests {
    use ring::{aead, hkdf};

    use super::{derive_traffic_iv, derive_traffic_key, KeySchedule, SecretKind};
    use crate::tls::rustls::key_log::KeyLog;

    #[test_log::test]
    fn test_vectors() {
        /* These test vectors generated with OpenSSL. */
        let hs_start_hash = [
            0xec, 0x14, 0x7a, 0x06, 0xde, 0xa3, 0xc8, 0x84, 0x6c, 0x02, 0xb2, 0x23, 0x8e, 0x41,
            0xbd, 0xdc, 0x9d, 0x89, 0xf9, 0xae, 0xa1, 0x7b, 0x5e, 0xfd, 0x4d, 0x74, 0x82, 0xaf,
            0x75, 0x88, 0x1c, 0x0a,
        ];

        let hs_full_hash = [
            0x75, 0x1a, 0x3d, 0x4a, 0x14, 0xdf, 0xab, 0xeb, 0x68, 0xe9, 0x2c, 0xa5, 0x91, 0x8e,
            0x24, 0x08, 0xb9, 0xbc, 0xb0, 0x74, 0x89, 0x82, 0xec, 0x9c, 0x32, 0x30, 0xac, 0x30,
            0xbb, 0xeb, 0x23, 0xe2,
        ];

        let ecdhe_secret = [
            0xe7, 0xb8, 0xfe, 0xf8, 0x90, 0x3b, 0x52, 0x0c, 0xb9, 0xa1, 0x89, 0x71, 0xb6, 0x9d,
            0xd4, 0x5d, 0xca, 0x53, 0xce, 0x2f, 0x12, 0xbf, 0x3b, 0xef, 0x93, 0x15, 0xe3, 0x12,
            0x71, 0xdf, 0x4b, 0x40,
        ];

        let client_hts = [
            0x61, 0x7b, 0x35, 0x07, 0x6b, 0x9d, 0x0e, 0x08, 0xcf, 0x73, 0x1d, 0x94, 0xa8, 0x66,
            0x14, 0x78, 0x41, 0x09, 0xef, 0x25, 0x55, 0x51, 0x92, 0x1d, 0xd4, 0x6e, 0x04, 0x01,
            0x35, 0xcf, 0x46, 0xab,
        ];

        let client_hts_key = [
            0x62, 0xd0, 0xdd, 0x00, 0xf6, 0x96, 0x19, 0xd3, 0xb8, 0x19, 0x3a, 0xb4, 0xa0, 0x95,
            0x85, 0xa7,
        ];

        let client_hts_iv = [
            0xff, 0xf7, 0x5d, 0xf5, 0xad, 0x35, 0xd5, 0xcb, 0x3c, 0x53, 0xf3, 0xa9,
        ];

        let server_hts = [
            0xfc, 0xf7, 0xdf, 0xe6, 0x4f, 0xa2, 0xc0, 0x4f, 0x62, 0x35, 0x38, 0x7f, 0x43, 0x4e,
            0x01, 0x42, 0x23, 0x36, 0xd9, 0xc0, 0x39, 0xde, 0x68, 0x47, 0xa0, 0xb9, 0xdd, 0xcf,
            0x29, 0xa8, 0x87, 0x59,
        ];

        let server_hts_key = [
            0x04, 0x67, 0xf3, 0x16, 0xa8, 0x05, 0xb8, 0xc4, 0x97, 0xee, 0x67, 0x04, 0x7b, 0xbc,
            0xbc, 0x54,
        ];

        let server_hts_iv = [
            0xde, 0x83, 0xa7, 0x3e, 0x9d, 0x81, 0x4b, 0x04, 0xc4, 0x8b, 0x78, 0x09,
        ];

        let client_ats = [
            0xc1, 0x4a, 0x6d, 0x79, 0x76, 0xd8, 0x10, 0x2b, 0x5a, 0x0c, 0x99, 0x51, 0x49, 0x3f,
            0xee, 0x87, 0xdc, 0xaf, 0xf8, 0x2c, 0x24, 0xca, 0xb2, 0x14, 0xe8, 0xbe, 0x71, 0xa8,
            0x20, 0x6d, 0xbd, 0xa5,
        ];

        let client_ats_key = [
            0xcc, 0x9f, 0x5f, 0x98, 0x0b, 0x5f, 0x10, 0x30, 0x6c, 0xba, 0xd7, 0xbe, 0x98, 0xd7,
            0x57, 0x2e,
        ];

        let client_ats_iv = [
            0xb8, 0x09, 0x29, 0xe8, 0xd0, 0x2c, 0x70, 0xf6, 0x11, 0x62, 0xed, 0x6b,
        ];

        let server_ats = [
            0x2c, 0x90, 0x77, 0x38, 0xd3, 0xf8, 0x37, 0x02, 0xd1, 0xe4, 0x59, 0x8f, 0x48, 0x48,
            0x53, 0x1d, 0x9f, 0x93, 0x65, 0x49, 0x1b, 0x9f, 0x7f, 0x52, 0xc8, 0x22, 0x29, 0x0d,
            0x4c, 0x23, 0x21, 0x92,
        ];

        let server_ats_key = [
            0x0c, 0xb2, 0x95, 0x62, 0xd8, 0xd8, 0x8f, 0x48, 0xb0, 0x2c, 0xbf, 0xbe, 0xd7, 0xe6,
            0x2b, 0xb3,
        ];

        let server_ats_iv = [
            0x0d, 0xb2, 0x8f, 0x98, 0x85, 0x86, 0xa1, 0xb7, 0xe4, 0xd5, 0xc6, 0x9c,
        ];

        let hkdf = hkdf::HKDF_SHA256;
        let mut ks = KeySchedule::new_with_empty_secret(hkdf);
        ks.input_secret(&ecdhe_secret);

        assert_traffic_secret(
            &ks,
            SecretKind::ClientHandshakeTrafficSecret,
            &hs_start_hash,
            &client_hts,
            &client_hts_key,
            &client_hts_iv,
        );

        assert_traffic_secret(
            &ks,
            SecretKind::ServerHandshakeTrafficSecret,
            &hs_start_hash,
            &server_hts,
            &server_hts_key,
            &server_hts_iv,
        );

        ks.input_empty();

        assert_traffic_secret(
            &ks,
            SecretKind::ClientApplicationTrafficSecret,
            &hs_full_hash,
            &client_ats,
            &client_ats_key,
            &client_ats_iv,
        );

        assert_traffic_secret(
            &ks,
            SecretKind::ServerApplicationTrafficSecret,
            &hs_full_hash,
            &server_ats,
            &server_ats_key,
            &server_ats_iv,
        );
    }

    fn assert_traffic_secret(
        ks: &KeySchedule,
        kind: SecretKind,
        hash: &[u8],
        expected_traffic_secret: &[u8],
        expected_key: &[u8],
        expected_iv: &[u8],
    ) {
        struct Log<'a>(&'a [u8]);
        impl KeyLog for Log<'_> {
            fn log(&self, _label: &str, _client_random: &[u8], secret: &[u8]) {
                assert_eq!(self.0, secret);
            }
        }
        let log = Log(expected_traffic_secret);
        let traffic_secret = ks.derive_logged_secret(kind, hash, &log, &[0; 32]);

        // Since we can't test key equality, we test the output of sealing with the key instead.
        let aead_alg = &aead::AES_128_GCM;
        let key = derive_traffic_key(&traffic_secret, aead_alg);
        let seal_output = seal_zeroes(key);
        let expected_key = aead::UnboundKey::new(aead_alg, expected_key).unwrap();
        let expected_seal_output = seal_zeroes(expected_key);
        assert_eq!(seal_output, expected_seal_output);
        assert!(seal_output.len() >= 48); // Sanity check.

        let iv = derive_traffic_iv(&traffic_secret);
        assert_eq!(iv.value(), expected_iv);
    }

    fn seal_zeroes(key: aead::UnboundKey) -> Vec<u8> {
        let key = aead::LessSafeKey::new(key);
        let mut seal_output = vec![0; 32];
        key.seal_in_place_append_tag(
            aead::Nonce::assume_unique_for_key([0; aead::NONCE_LEN]),
            aead::Aad::empty(),
            &mut seal_output,
        )
        .unwrap();
        seal_output
    }
}