Dolev-Yao Fuzzing:
Formal Dolev-Yao Models Meet
Cryptographic Protocol Fuzz Testing

Max Ammann
Trail of Bits, USA

Memory Safety Vulnerabilities

4 HeartBleed ,;5;

4 CVE-2023-6936

Lucca Hirschi
Inria, France

b4 CVE-2022-25640

Steve Kremer
Inria, France

Protocol Vulnerabilities

Specification-level _

RO

Fuzzing (e.g. AFL)

4 CGVE-2022-42905

4 goto falil;

Corpus of Program
' test-cases Under Test
O |

Feedback

Crash |

b4 CVE-2022-38152

b4 CVE-2022-25640

oy

H 3HandShake

M

DY Formal Verification

<

N If new
I 4'_c:overage ¢

Pick a
test-case

Problem: How to capture this blind spot?

|

<

‘: \ Execute
® '

b4 CVE-2022-39173

4 CVE-2021-3449

Not reachable

(e.g. buffer-overflow)

No structural message/message flow
modification, e.g. negligible probability
of computing crypto and other structural
modifications through bit-level mutations

X Fuzzing Limitation 1: Reachability
Bitstring-level mutations only
" ettt

State: DY Test-Case

* We build on « messages as formal terms » and assume a set of
function symbols. Example: dec(o,0), enc(o,0), sign(o,0)

» Test cases = symbolic traces expressing DY attacker &’s actions

tr := out(r, w).tr | in(r, R).tr| O // Ris aterm, w a variable, r a role

Example: out(client,w1).

in(serv,wy). // attacker @ only relays message w; to serv
out(serv,wo).

in(client, sign(dec(ws ksob), katt))

// attacker @ computes a new term

bit-level mutations «*

A i
—_——b
Mutations
\ Test-case e.g. bit flips, Mutated 4 CVE-2022-38153
. byte increment test-case

Not detected
Not reachable

through

! Threat model &: intercept, modify, inject messages on the
' network and can use cryptographic functionalities, e.g. enc/dec

. sign(o,0) &, !
Messages modelled in a formal term algebra, e.g. / N 3
: dec(o,90) Katt
1 e oo Formal model <
t specification W1 KBob

f

A k Modeling DH 2
h/ —> &I FP()
() WU \ J

o
Automated "

"Success stories": § | y
verification Tools: Proverif / Tamarin'

N TLS, EMV, 5G, LAKE
\, EDHOC, etc.

through

X Fuzzing Limitation 2: Detection
Inability to detect protocol vulnerabilities

", bit-level mutations

Protocol vulnerabilities do not
manifest themselves as
crashes or memory corruption,

o @®

N Attacks prop

&

(e.g. authentication bypass)

X DY Verification Limitation: Specification only
No guarantee on implementation
w —w

e.g. authentication bypass

Harness: Mapper + Executor

* To each function symbol f, we build an
interpretation [f]] : [u8]" — [u§]
Example: [sign]|(m, key) := ECDSA(m, key)

* Mapper can interpret any term by recursively
applying interpretations [-]| : Yerms — [u8]

* Mapper is protocol-dependent but PUT-
iIndependent and can be built once-for-all on top
of a reference implementation or any PUT

out of wo and sends it to client

DY Mutations

Action-level Mutations

o Skip: remove random action (in/out)

{[

Harness

Observe
execution

Mutate trace

/
l
PUT Observers

)

Test case

Mutational Stage v

Mutator @]

TScheduIed test case

\] Mutated test case

* Repeat: randomly copy and insert an action

|

Term-level Mutations

with observations

Objective Oracle @

Adds test case to

Feedback
Adds test case to Corpus

Scheduler }

 Swap: Swap two (sub-)terms in the trace

Generate: Replace a term by a random one

Replace-Match: Swap two function symbols (e.g. SHA2 <-> SHAS3)

Replace-Reuse: Replace a (sub-)term by another (sub-)term

Replace-and-Lift: Replace a (sub-)term by one of its sub-terms

———

tispuffin: a full-fledge DY fuzzer

* Open-source project written in Rust (16k LoC) (tlspuffin on Github)

A if interesting Objectives if violates a
Test cases Test case to add seeuitisy [Pelicy
State G |
Corpus Objectives
N N Test case to add
A A

Test case Test case

(Trace + Metadata) (Trace + Metadata)

|
DY Fuzzer =
DY attacker & in a fuzzing loop

» Built on LibAFL, a modular library to build fuzzers CVEID CVSS Type New Target
« Made modular: new protocol and PUTs can be added 2021-3449 | 5.9 ServerDoS,M X OpenSS
. . . 2022-25638 6.5 Auth.Bypass,P X WoIfSSL
* For TLS: 189 function symbols and Open/Boring/Wolf/LibreSSL as PUTs
| | | 2022-25640 Auth. Bypass, P X WoIfSSL
* We ran tlspuffin on those and found 8 CVE, including 5 new CVEs 5022-38152 ClientDoS, M v WolfSSL
Other state-of-the-art fuzzers do not found those, we do thanks to 2022-38153 59 ServerDoS,M v WolfSSL
. 2022-39173 Server DoS,M v WolIfSSL
DY Fuzzing

Checkout our website: 2022-42905 sl Info. Leak, M v WolfSSL
https://tispuffin.github.io 2023-6936 @ 5.3 Info. Leak, M v WOoIfSSL

IEEE Security and Privacy, May 20, 2024

lrreia —

ThAL
o ITO

B'7S

01101001
01100001
01101100 °
olioll111
iz loria
01101001\
7110000101 |
110110001 11
oritiolnl

Executor

Executor concretizes DY traces (tr) with the PUT (e.g. OpenSSL):
1. Initialize all agents, client and serv, and their 10 buffers

2. On output actions: e.g. out(client, w)
a. call PUT to read bitstring b,, from output buffer of client
b. let client progress

3. On input actions: e.qg. in(serv, R)

a. invoke Mapper to concretise term R into a bitstring by := [[R]]

b. call PUT to write b, onto input buffer of serv
c. let serv progress

DY Obijective Oracle

Memory-related objective oracle

 Classical with bit-level fuzzing: code instrumentation with
AddressSanitizer (ASan)

DY security properties checking

* Introduce claims triggered by roles executing the PUT
E.g. agreement claims: Agr(client, pk, m)@i means "client believes to

have agreed with a server with public key pk on m at ith action”

* As in DY models: security properties expressed as 1st-order formula
E.g. auth. vpk,m: Agr(client, pk, m)@i = Run(server, pk, m)@j A j<i

* Objective Oracle always checks those properties by first applying [| -]

Future Work

» Code-coverage is a poor metric prone to exhaustion, we plan to
design a domain-specific DY-based notion of coverage

» Explore differential fuzzing + extend objective oracle (with more
properties and compromise scenarios)

 Combine DY fuzzing with bit-level fuzzing: reach deep states and then
smash PUTs with bit-level mutations [WIP]

* Apply DY fuzzing to more protocols (e.g WPA*, TelCo, etc.) and PUTs
 Partially automate the Mapper (and Harness) = PUT/Protocol-agnostic

* Connect further with DY verification tools (ProVerif/Tamarin)

©
anr agence nationale

de la recherche

	IEEE Security and Privacy, May 20, 2024

