
(e.g. authentication bypass)

Protocol Vulnerabilities
Specification-level

Dolev-Yao Fuzzing: 
Formal Dolev-Yao Models Meet 

Cryptographic Protocol Fuzz Testing

Max Ammann 
Trail of Bits, USA

 
IEEE Security and Privacy, May 20, 2024

Lucca Hirschi  
Inria, France

Steve Kremer 
Inria, France

(e.g. buffer-overflow)

Memory Safety Vulnerabilities

↯ HeartBleed

Fuzzing (e.g. AFL)

Not reachable through

bit-level mutations

Not detected  
Not reachable through


bit-level mutations

Problem: How to capture this blind spot?

DY Formal Verification
↯ CVE-2022-42905

↯ goto fail;

↯ 3HandShake

01

0010

1101

10

0010

1110

Pick a

test-case Execute

Corpus of 
test-cases

Test-case Mutated 
test-case

  If new

coverage

Feedback

Program 
Under Test

Crash 
↯

🤖

Mutations 

e.g. bit flips, 

byte increment

✗ Fuzzing Limitation 1: Reachability 
Bitstring-level mutations only

✗ Fuzzing Limitation 2: Detection 
Inability to detect protocol vulnerabilities

✗ DY Verification Limitation: Specification only 
No guarantee on implementation

No structural message/message flow 
modification, e.g. negligible probability 
of computing crypto and other structural 
modifications through bit-level mutations

Protocol vulnerabilities do not 
manifest themselves as 
crashes or memory corruption, 
e.g. authentication bypass

sign(○,○)

kAttdec(○,○)

w1 kBob

Threat model 👺: intercept, modify, inject messages on the 
network and can use cryptographic functionalities, e.g. enc/dec

Messages modelled in a formal term algebra, e.g.

State: DY Test-Case 

• We build on « messages as formal terms » and assume a set of 

function symbols. Example: dec(○,○), enc(○,○), sign(○,○) 


• Test cases = symbolic traces expressing DY attacker 👺’s actions


tr := out(r, w).tr |  in(r, R).tr |  0     // R is a term, w a variable, r a role


       Example:      out(client,w1). 
       in(serv,w1). 
       out(serv,w2). 
       in(client, sign(dec(w2,kBob), kAtt))

// attacker 👺 only relays message w1 to serv

// attacker 👺 computes a new term 
    out of w2 and sends it to client 

∥ ⊧ Ψ( )
f

wi u
👺

Formal modelProtocol 
specification

Modeling
h k


Tools: Proverif / Tamarin
Automated

verification

↯ or
Attacks Proofs

"Success stories": 
TLS, EMV, 5G, LAKE 

EDHOC, etc.

↯ CVE-2022-39173

↯ CVE-2022-38152

↯ CVE-2022-38153

↯ CVE-2022-25640

↯ CVE-2021-3449

↯ CVE-2022-25640
↯ CVE-2023-6936

Harness: Mapper + Executor 

• To each function symbol f, we build an 

interpretation     
Example: ECDSA(m, key)       


• Mapper can interpret any term by recursively 
applying interpretations 


• Mapper is protocol-dependent but PUT-
independent and can be built once-for-all on top 
of a reference implementation or any PUT 

[[ f ]] : [u8]n → [u8]
[[sign]](m, key) :=

[[ ⋅ ]] : 𝒯erms → [u8]

DY Mutations 

Action-level Mutations


• Skip: remove random action (in/out)


• Repeat: randomly copy and insert an action


Term-level Mutations


• Swap: Swap two (sub-)terms in the trace


• Generate: Replace a term by a random one


• Replace-Match: Swap two function symbols (e.g. SHA2 <-> SHA3)


• Replace-Reuse: Replace a (sub-)term by another (sub-)term


• Replace-and-Lift: Replace a (sub-)term by one of its sub-terms
DY Fuzzer = 

DY attacker 👺 in a fuzzing loop

👺

👺

👺

👺

Executor

Executor concretizes DY traces (tr) with the PUT (e.g. OpenSSL):


1. Initialize all agents, client and serv, and their IO buffers

2. On output actions: e.g. out(client, w) 

a. call PUT to read bitstring bw from output buffer of client 
b. let client progress


3. On input actions: e.g. in(serv, R)

a. invoke Mapper to concretise term R into a bitstring  

b. call PUT to write  onto input buffer of serv 
c. let serv progress

bR := [[ ]]
bR

DY Objective Oracle 

Memory-related objective oracle


• Classical with bit-level fuzzing: code instrumentation with 
AddressSanitizer (ASan)


DY security properties checking


• Introduce claims triggered by roles executing the PUT 
E.g. agreement claims: Agr(client, pk, m)@i means "client believes to 
have agreed with a server with public key pk on m at ith action" 

• As in DY models: security properties expressed as 1st-order formula 
E.g. auth. ∀pk,m: Agr(client, pk, m)@i ⇒ Run(server, pk, m)@j  ⋀ j<i 

• Objective Oracle always checks those properties by first applying [[ ⋅ ]]

tlspuffin: a full-fledge DY fuzzer 

• Open-source project written in Rust (16k LoC)  (tlspuffin on Github)


• Built on LibAFL, a modular library to build fuzzers


• Made modular: new protocol and PUTs can be added


• For TLS: 189 function symbols and Open/Boring/Wolf/LibreSSL as PUTs


• We ran tlspuffin on those and found 8 CVE, including 5 new CVEs


Other state-of-the-art fuzzers do not found those, we do thanks to 

CVE ID CVSS Type New
?

Target
2021-3449 5.9 Server DoS, M ✗ OpenSS

L2022-25638 6.5 Auth. Bypass, P ✗ WolfSSL
2022-25640 7.5 Auth. Bypass, P ✗ WolfSSL
2022-38152 7.5 Client DoS, M ✓ WolfSSL
2022-38153 5.9 Server DoS, M ✓ WolfSSL
2022-39173 7.5 Server DoS, M ✓ WolfSSL
2022-42905 9.1 Info. Leak, M ✓ WolfSSL
2023-6936 5.3 Info. Leak, M ✓ WolfSSL

Checkout our website: 
https://tlspuffin.github.io

R

DY Fuzzing

👺

Future Work

• Code-coverage is a poor metric prone to exhaustion, we plan to 

design a domain-specific DY-based notion of coverage


• Explore differential fuzzing + extend objective oracle (with more 
properties and compromise scenarios)


• Combine DY fuzzing with bit-level fuzzing: reach deep states and then 
smash PUTs with bit-level mutations [WIP]


• Apply DY fuzzing to more protocols (e.g WPA*, TelCo, etc.) and PUTs


• Partially automate the Mapper (and Harness) → PUT/Protocol-agnostic


• Connect further with DY verification tools (ProVerif/Tamarin)


	IEEE Security and Privacy, May 20, 2024

