Struct puffin::stream::MemoryStream

source ·
pub struct MemoryStream {
    inbound: Channel,
    outbound: Channel,
}
Expand description

A MemoryStream has two Channels. The Stream also implements the Write and Read trait.

  • When writing to a MemoryStream its outbound channel gets filled.
  • When reading from a MemoryStream data is taken from the inbound channel.

This makes it possible for an crate::agent::Agent to treat a MemoryStream like a TLS socket! By writing to this socket you are sending data out. By reading from it you receive data.

Note: There need to be two separate buffer! Else for example a TLS socket would read and write into the same buffer

Fields§

§inbound: Channel§outbound: Channel

Implementations§

Trait Implementations§

Pull some bytes from this source into the specified buffer, returning how many bytes were read. Read more
Like read, except that it reads into a slice of buffers. Read more
🔬This is a nightly-only experimental API. (can_vector)
Determines if this Reader has an efficient read_vectored implementation. Read more
Read all bytes until EOF in this source, placing them into buf. Read more
Read all bytes until EOF in this source, appending them to buf. Read more
Read the exact number of bytes required to fill buf. Read more
🔬This is a nightly-only experimental API. (read_buf)
Pull some bytes from this source into the specified buffer. Read more
🔬This is a nightly-only experimental API. (read_buf)
Read the exact number of bytes required to fill cursor. Read more
Creates a “by reference” adaptor for this instance of Read. Read more
Transforms this Read instance to an Iterator over its bytes. Read more
Creates an adapter which will chain this stream with another. Read more
Creates an adapter which will read at most limit bytes from it. Read more
Takes a single TLS message from the outbound channel
Write a buffer into this writer, returning how many bytes were written. Read more
Flush this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
Like write, except that it writes from a slice of buffers. Read more
🔬This is a nightly-only experimental API. (can_vector)
Determines if this Writer has an efficient write_vectored implementation. Read more
Attempts to write an entire buffer into this writer. Read more
🔬This is a nightly-only experimental API. (write_all_vectored)
Attempts to write multiple buffers into this writer. Read more
Writes a formatted string into this writer, returning any error encountered. Read more
Creates a “by reference” adapter for this instance of Write. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Executes the given command directly.

The given command its ANSI escape code will be written and flushed onto Self.

Arguments
  • Command

    The command that you want to execute directly.

Example
use std::io::{Write, stdout};

use crossterm::{Result, ExecutableCommand, style::Print};

 fn main() -> Result<()> {
     // will be executed directly
      stdout()
        .execute(Print("sum:\n".to_string()))?
        .execute(Print(format!("1 + 1= {} ", 1 + 1)))?;

      Ok(())

     // ==== Output ====
     // sum:
     // 1 + 1 = 2
 }

Have a look over at the Command API for more details.

Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.

Executes the given command directly.

The given command its ANSI escape code will be written and flushed onto Self.

Arguments
  • Command

    The command that you want to execute directly.

Example
use std::io::{Write, stdout};

use crossterm::{Result, ExecutableCommand, style::Print};

 fn main() -> Result<()> {
     // will be executed directly
      stdout()
        .execute(Print("sum:\n".to_string()))?
        .execute(Print(format!("1 + 1= {} ", 1 + 1)))?;

      Ok(())

     // ==== Output ====
     // sum:
     // 1 + 1 = 2
 }

Have a look over at the Command API for more details.

Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The Resulting [TupleList], of an [Prepend::prepend()] call, including the prepended entry.
Prepend a value to this tuple, returning a new tuple with prepended value.

Queues the given command for further execution.

Queued commands will be executed in the following cases:

  • When flush is called manually on the given type implementing io::Write.
  • The terminal will flush automatically if the buffer is full.
  • Each line is flushed in case of stdout, because it is line buffered.
Arguments
  • Command

    The command that you want to queue for later execution.

Examples
use std::io::{Write, stdout};

use crossterm::{Result, QueueableCommand, style::Print};

 fn main() -> Result<()> {
    let mut stdout = stdout();

    // `Print` will executed executed when `flush` is called.
    stdout
        .queue(Print("foo 1\n".to_string()))?
        .queue(Print("foo 2".to_string()))?;

    // some other code (no execution happening here) ...

    // when calling `flush` on `stdout`, all commands will be written to the stdout and therefore executed.
    stdout.flush()?;

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}

Have a look over at the Command API for more details.

Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.

Queues the given command for further execution.

Queued commands will be executed in the following cases:

  • When flush is called manually on the given type implementing io::Write.
  • The terminal will flush automatically if the buffer is full.
  • Each line is flushed in case of stdout, because it is line buffered.
Arguments
  • Command

    The command that you want to queue for later execution.

Examples
use std::io::{Write, stdout};

use crossterm::{Result, QueueableCommand, style::Print};

 fn main() -> Result<()> {
    let mut stdout = stdout();

    // `Print` will executed executed when `flush` is called.
    stdout
        .queue(Print("foo 1\n".to_string()))?
        .queue(Print("foo 2".to_string()))?;

    // some other code (no execution happening here) ...

    // when calling `flush` on `stdout`, all commands will be written to the stdout and therefore executed.
    stdout.flush()?;

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}

Have a look over at the Command API for more details.

Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.
Reads an unsigned 8 bit integer from the underlying reader. Read more
Reads a signed 8 bit integer from the underlying reader. Read more
Reads an unsigned 16 bit integer from the underlying reader. Read more
Reads a signed 16 bit integer from the underlying reader. Read more
Reads an unsigned 24 bit integer from the underlying reader. Read more
Reads a signed 24 bit integer from the underlying reader. Read more
Reads an unsigned 32 bit integer from the underlying reader. Read more
Reads a signed 32 bit integer from the underlying reader. Read more
Reads an unsigned 48 bit integer from the underlying reader. Read more
Reads a signed 48 bit integer from the underlying reader. Read more
Reads an unsigned 64 bit integer from the underlying reader. Read more
Reads a signed 64 bit integer from the underlying reader. Read more
Reads an unsigned 128 bit integer from the underlying reader. Read more
Reads a signed 128 bit integer from the underlying reader. Read more
Reads an unsigned n-bytes integer from the underlying reader. Read more
Reads a signed n-bytes integer from the underlying reader. Read more
Reads an unsigned n-bytes integer from the underlying reader.
Reads a signed n-bytes integer from the underlying reader.
Reads a IEEE754 single-precision (4 bytes) floating point number from the underlying reader. Read more
Reads a IEEE754 double-precision (8 bytes) floating point number from the underlying reader. Read more
Reads a sequence of unsigned 16 bit integers from the underlying reader. Read more
Reads a sequence of unsigned 32 bit integers from the underlying reader. Read more
Reads a sequence of unsigned 64 bit integers from the underlying reader. Read more
Reads a sequence of unsigned 128 bit integers from the underlying reader. Read more
Reads a sequence of signed 8 bit integers from the underlying reader. Read more
Reads a sequence of signed 16 bit integers from the underlying reader. Read more
Reads a sequence of signed 32 bit integers from the underlying reader. Read more
Reads a sequence of signed 64 bit integers from the underlying reader. Read more
Reads a sequence of signed 128 bit integers from the underlying reader. Read more
Reads a sequence of IEEE754 single-precision (4 bytes) floating point numbers from the underlying reader. Read more
👎Deprecated since 1.2.0: please use read_f32_into instead
DEPRECATED. Read more
Reads a sequence of IEEE754 double-precision (8 bytes) floating point numbers from the underlying reader. Read more
👎Deprecated since 1.2.0: please use read_f64_into instead
DEPRECATED. Read more

Performs a set of actions within a synchronous update.

Updates will be suspended in the terminal, the function will be executed against self, updates will be resumed, and a flush will be performed.

Arguments
  • Function

    A function that performs the operations that must execute in a synchronized update.

Examples
use std::io::{Write, stdout};

use crossterm::{Result, ExecutableCommand, SynchronizedUpdate, style::Print};

 fn main() -> Result<()> {
    let mut stdout = stdout();

    stdout.sync_update(|stdout| {
        stdout.execute(Print("foo 1\n".to_string()))?;
        stdout.execute(Print("foo 2".to_string()))?;
        // The effects of the print command will not be present in the terminal
        // buffer, but not visible in the terminal.
        crossterm::Result::Ok(())
    })?;

    // The effects of the commands will be visible.

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}
Notes

This command is performed only using ANSI codes, and will do nothing on terminals that do not support ANSI codes, or this specific extension.

When rendering the screen of the terminal, the Emulator usually iterates through each visible grid cell and renders its current state. With applications updating the screen a at higher frequency this can cause tearing.

This mode attempts to mitigate that.

When the synchronization mode is enabled following render calls will keep rendering the last rendered state. The terminal Emulator keeps processing incoming text and sequences. When the synchronized update mode is disabled again the renderer may fetch the latest screen buffer state again, effectively avoiding the tearing effect by unintentionally rendering in the middle a of an application screen update.

The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
Writes an unsigned 8 bit integer to the underlying writer. Read more
Writes a signed 8 bit integer to the underlying writer. Read more
Writes an unsigned 16 bit integer to the underlying writer. Read more
Writes a signed 16 bit integer to the underlying writer. Read more
Writes an unsigned 24 bit integer to the underlying writer. Read more
Writes a signed 24 bit integer to the underlying writer. Read more
Writes an unsigned 32 bit integer to the underlying writer. Read more
Writes a signed 32 bit integer to the underlying writer. Read more
Writes an unsigned 48 bit integer to the underlying writer. Read more
Writes a signed 48 bit integer to the underlying writer. Read more
Writes an unsigned 64 bit integer to the underlying writer. Read more
Writes a signed 64 bit integer to the underlying writer. Read more
Writes an unsigned 128 bit integer to the underlying writer.
Writes a signed 128 bit integer to the underlying writer.
Writes an unsigned n-bytes integer to the underlying writer. Read more
Writes a signed n-bytes integer to the underlying writer. Read more
Writes an unsigned n-bytes integer to the underlying writer. Read more
Writes a signed n-bytes integer to the underlying writer. Read more
Writes a IEEE754 single-precision (4 bytes) floating point number to the underlying writer. Read more
Writes a IEEE754 double-precision (8 bytes) floating point number to the underlying writer. Read more